Clobber-NVM: Log Less, Re-execute More

Yi Xul,J oseph Izraelevitz2, and Steven Swanson

1

'UC San Diego
2University of Colorado, Boulder

Abstract

Non-volatile memory allows direct access to persistent stor-
age via a load/store interface. However, because the cache
is volatile, cached updates to persistent state will be dropped
after a power loss. Failure-atomicity NVM libraries provide
the means to apply sets of writes to persistent state atomi-
cally. Unfortunately, most of these libraries impose significant
overhead.

This work proposes Clobber-NVM, a failure-atomicity li-
brary that ensures data consistency by reexecution. Clobber-
NVM'’s novel logging strategy, clobber logging, records only
those transaction inputs that are overwritten during transac-
tion execution. Then, after a failure, it recovers to a consistent
state by restoring overwritten inputs and reexecuting any inter-
rupted transactions. Clobber-NVM utilizes a clobber logging
compiler pass for identifying the minimal set of writes that
need to be logged. Based on our experiments, classical undo
logging logs up to 41.5x more bytes than Clobber-NVM, and
requires 2X to 6.7X more expensive ordering instructions.
Less logging leads to better performance: Relative to prior
art, Clobber-NVM provides up to 2.2x performance improve-
ment over Mnemosyne, 2.7x over Intel’s PMDK, and up to
6.2x over HP’s Atlas.

1. Motivation

Non-volatile memory exposes persistent storage via a byte-
addressable load/store interface. However, because the cache
is volatile, cached updates to persistent state will be dropped
after a power loss.

Failure-atomicity NVM libraries provide the means to apply
sets of writes to persistent state atomically. These libraries
provide failure-atomicity for specified code regions: for writes
within a specified code region, all writes will survive a power
loss and be written to NVM, or none will. These transaction-
like, “all-or-nothing,” semantics make programming on NVM
easier and hide architectural and caching details from program-
mers. Unfortunately, most current libraries impose significant
overhead.

2. Limitations of the State of the Art

Most industrial failure atomicity systems use undo logging [21,
3]. In undo logging systems, where incomplete transactions
are undone by applying undo log entries, the log entry must be
persistent before the corresponding data update, which results
in excessive persistence ordering constraints. In contrast, redo
logging systems only have to persist the logs at transaction

commit, but they need to intercept and redirect reads [24, 12,
9]. Prior attempts to reduce the logging cost either rely on
special hardware [15, 14, 1, 10, 7, 22], target specific data
structures [5, 20, 8, 26, 4, 23], double memory consumption
by maintaining an additional working set shadow copy [19, 6,
17, 2, 25], impose limitations on programming model [13, 18]
or relax the isolation model [11, 16].

Among these systems, JUSTDO logging [13] proposed
recovery-via-resumption. In contrast to undo logging,
JUSTDO logging tracks enough program state to resume
a failure-atomic operation at recovery, resuming execution
from the interrupted instruction. Subsequent work in iDO
logging [18] dramatically reduces program state logging fre-
quency by exploiting idempotent code regions (a segment of
code that does not overwrite its input). However, their runtime
overhead remains quite high, and they strictly limit volatile
data usage during a failure-atomic operation.

3. Key Insight

Clobber-NVM ensures failure-atomicity by reexecuting any
interrupted transactions at recovery and relies on a new logging
method — clobber logging. Clobber logging’s key insight is
that logging only overwritten inputs is sufficient to reexecute a
transaction with the exact same results. We call a transaction
input a clobbered input if it may be overwritten within the
transaction, and term this write a clobber write. Clobbered
inputs are a problem for reexecution: If an input is clobbered
during transaction execution, reexecuting the code will use a
new value for the input.

The observation behind clobber logging is that clobber
writes break reexecution — but undo logging them in a clob-
ber log can preserve the clobbered inputs. Values at other
addresses never need to be logged in clobber logging, since
they will be overwritten upon reexecution. Because inputs
which are not clobbered are expected to be available after a
failure, and clobbered inputs are preserved in the undo log,
clobber logging is sufficient for recovery.

Clobber logging drastically reduces the cost of failure atom-
icity. Clobber logging only logs a small set of selected values
— the clobbered inputs, whereas undo logging must log before
every writes in a transaction. Relative to prior recovery-via-
resumption systems, clobber logging reduces log frequency.
It only logs before a clobber write happens, while JUSTDO
logs at every store and iDO logs at every idempotent region
boundary and those regions tend to be small [18].

4. Main Artifacts

Our main artifact is Clobber-NVM, a combined compiler/run-
time library that enforces failure atomicity using clobber log-
ging.

The Clobber-NVM compiler extension, built on top of
LLVM, is used to identify clobber writes within transactions
using dependency analysis. It first identifies all possible input
reads and all possible clobber writes as candidates for clobber
logging. However, due to ambiguity in the analysis, it may
conservatively over-identify clobber writes leading to exces-
sive logging. Our compiler analysis subsequently refines the
result through novel analysis propagation. The propagation
reduces Clobber-NVM’s logging cost by avoiding logging at
writes that will never actually be clobber writes at runtime.

To support volatile data usage inside transactions, Clobber-
NVM uses a separate log (the viog) to store minimal volatile
data needed to re-construct a transaction’s volatile input.

The Clobber-NVM runtime manages the clobber log and
the vlog. Our clobber log is built on PMDK’s undo log API.
This design choice leaves Clobber-NVM’s clobber log very
simple. Clobber-NVM manages the vlog directly.

The Clobber-NVM runtime also manages recovery of in-
terrupted transactions after a crash. Figure 1(top row) shows
a transaction progressing through normal execution. A trans-
action interrupted by a crash follows a different path. As
with normal execution, the transaction starts with initial-
ized inputs and untouched outputs (Figure 1, top left), then
progresses through execution by writing to some output ad-
dresses(Figure 1, top center), including clobber writes.

However, a power failure during execution drops the transac-
tion to the recovery path. After the power loss, the transaction
loses all volatile memory and some NVM outputs that still
resided in the machine’s (volatile) caches (Figure 1, bottom
left). At restart, Clobber-NVM restores both the volatile and
clobbered inputs using the transaction’s logs, though the out-
puts may still be inconsistent (Figure 1, bottom center). With
its inputs restored, the transaction is reexecuted from the be-
ginning (Figure 1, bottom right).

Once the transaction executes past the point when the failure
happened, the transaction has overwritten any incomplete out-
puts, erasing any inconsistencies caused by the power loss (Fig-
ure 1, top center). The transaction will continue to progress to
completion and commit (Figure 1, top right).

5. Key Results

Figure 2 shows memcached performance on Clobber-NVM.
We make the following observations. First, Clobber-NVM
always outperforms Intel’s PMDK [21] and Mnemosyne [24],
two prior failure atomicity systems. It provides, on average,
1.6x and 1.4x of PMDK and Mnemosyne performance, re-
spectively. Second, Clobber-NVM outperforms PMDK and
Mnemosyne more on write intensive workloads, because they
involve more logging operations. Third, on single thread work-

3 i
;“RAM st L@ROQUES |1 Finish

Execution { Execution
ot | 2| e ey

oz Txn Power L3 Txn o . o3 Txn
Failure/ Continue
» \Executlon P— -

Restart

Restore
; DRAM Input M Executio: ‘
um from T RS gy Tn= NVMi

Logs

Txn l::::m::::-i
Figure 1: Recovery Process of One Transaction. The /n and

Out indicate addresses, instead of values — an output address
may be updated several times during the transaction.

Txn

95% Insert, 5% Search 75% Insert, 25% Search

53 > >

s A
=) 3{, KD

3 A A A L A

< 2 2 1ps

2 |

<

£ 19 1

T T T T T 0 T T T T
1 2 4 8 16 1 2 4 8 16

A~ PMDK —@— Clobber-NVM P>— Mnemosyne

Figure 2: Memcached Performance with 16-byte Keys and
64-byte Values

loads, Clobber-NVM outperforms PMDK and Mnemosyne
by up to 1.7x and 2.2 x, respectively. Because this version
of memcached uses a global lock to provide concurrency,
Clobber-NVM and PMDK, as lock-based systems, scales
poorly compared to Mnemosyne. We see their scalability
and performance improve on data structures with a finer-grain
locking scheme (see Figure 6 in the full paper).

6. Contributions

This paper makes the following contributions:

e It presents clobber logging, a novel, recovery-via-
resumption strategy that reduces log size by only recording
overwritten transaction inputs.

* It presents a clobber logging compiler pass for identifying
those transaction inputs that need to be logged.

e It introduces Clobber-NVM, a compiler-based failure-
atomicity solution based on recovery-via-resumption.

* It demonstrates that Clobber-NVM'’s performance compares
favorably with the existing state-of-the-art systems, showing
up to 2.2x improvement over Mnemosyne and 2.7 x over
Intel’s PMDK, and up to 6.2 x improvement over HP’s Atlas.
It shows Clobber-NVM’s logging strategy reduces log size
by 1.02x to 41.5x and required expensive ordering fences
by 2x to 6.67x relative to Intel’s PMDK.

References

[1] Miao Cai, Chance C Coats, and Jian Huang. Hoop: Efficient
hardware-assisted out-of-place update for non-volatile memory. In
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 584-596. IEEE, 2020.

[2]

[3]

[4]
[5]

[6]

(7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

Daniel Castro, Paolo Romano, and Joao Barreto. Hardware transac-
tional memory meets memory persistency. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 368—
377,2018.

Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas:
Leveraging locks for non-volatile memory consistency. ACM SIGPLAN
Notices, 49(10):433-452, 2014.

Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main
memory. Proceedings of the VLDB Endowment, 8(7):786-797, 2015.
Nachshon Cohen, David T Aksun, Hillel Avni, and James R Larus.
Fine-grain checkpointing with in-cache-line logging. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 441-454,

2019.
Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Effi-

cient algorithms for persistent transactional memory. In Proceedings of
the 30th on Symposium on Parallelism in Algorithms and Architectures,
pages 271-282, 2018.

Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and Vijay Na-
garajan. Lazy release persistency. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1173-1186, 2020.

Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-
trank. A persistent lock-free queue for non-volatile memory. ACM
SIGPLAN Notices, 53(1):28-40, 2018.

Ellis R Giles, Kshitij Doshi, and Peter Varman. Softwrap: A
lightweight framework for transactional support of storage class mem-
ory. In 2015 31st Symposium on Mass Storage Systems and Technolo-
gies (MSST), pages 1-14. IEEE, 2015.

Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M Chen,
Satish Narayanasamy, and Thomas F Wenisch. Relaxed persist ordering
using strand persistency. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 652—665. IEEE,
2020.

Jinyu Gu, Qiangian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang,
Haibing Guan, and Haibo Chen. Pisces: A scalable and efficient
persistent transactional memory. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC
’19, page 913-928, USA, 2019. USENIX Association.

Terry Ching-Hsiang Hsu, Helge Briigner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. Nvthreads: Practical persistence for multi-
threaded applications. In Proceedings of the Twelfth European Confer-
ence on Computer Systems, pages 468-482, 2017.

Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. In Proceedings of
the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’16,
pages 427-442, New York, NY, USA, 2016. ACM.

Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F
Wenisch. High-performance transactions for persistent memories. In
Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 399-411, 2016.

Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M Chen, and Thomas F Wenisch. Dele-
gated persist ordering. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1-13. IEEE, 2016.
R Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony
Demeri, Changwoo Min, and Sudarsun Kannan. Durable transactional
memory can scale with timestone. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 335-349, 2020.

Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei
Wu, Weimin Zheng, and Jinglei Ren. Dudetm: Building durable
transactions with decoupling for persistent memory. ACM SIGPLAN
Notices, 52(4):329-343, 2017.

Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H
Noh, and Changhee Jung. ido: Compiler-directed failure atomicity for
nonvolatile memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258-270. IEEE,

2018.
Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi

Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.
Atomic in-place updates for non-volatile main memories with kamino-
tx. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys *17, page 499-512, New York, NY, USA, 2017.
Association for Computing Machinery.

Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B Morrey III,
Dhruva R Chakrabarti, and Michael L Scott. Dali: A periodically
persistent hash map. In 3/st International Symposium on Distributed

[21]
[22]

[23]

[24]

[25]

[26]

Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2017.

pmem.io. Persistent Memory Development Kit, 2017. http://pmem.io/
pmdk.

Seunghee Shin, James Tuck, and Yan Solihin. Hiding the long latency
of persist barriers using speculative execution. In Proceedings of the
44th Annual International Symposium on Computer Architecture, pages
175-186, 2017.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H. Campbell. Consistent and durable data structures for non-
volatile byte-addressable memory. In Proceedings of the 9th USENIX
Conference on File and Stroage Technologies, FAST’ 11, page 5, USA,

2011. USENIX Association.
Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:

Lightweight Persistent Memory. In ASPLOS ’11: Proceeding of the
16th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, New York, NY, USA, 2011.
ACM.

Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Lujan.

Pmthreads: persistent memory threads harnessing versioned shadow
copies. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 623—637,

2020.
Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong

Yong, and Bingsheng He. Nv-tree: Reducing consistency cost for
nvm-based single level systems. In 13th {USENIX} Conference on
File and Storage Technologies ({FAST} 15), pages 167-181, 2015.

http://pmem.io/pmdk
http://pmem.io/pmdk

	Motivation
	Limitations of the State of the Art
	Key Insight
	Main Artifacts
	Key Results
	Contributions

