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1. Motivation

Non-volatile memory exposes persistent storage via a byte-
addressable load/store interface. However, because the cache
is volatile, cached updates to persistent state will be dropped
after a power loss.

Failure-atomicity NVM libraries provide the means to apply
sets of writes to persistent state atomically. These libraries
provide failure-atomicity for specified code regions: for writes
within a specified code region, all writes will survive a power
loss and be written to NVM, or none will. These transaction-
like, ““all-or-nothing,” semantics make programming on NVM
easier and hide architectural and caching details from program-
mers. Unfortunately, most current libraries impose significant
overhead.

2. Limitations of the State of the Art

Most industrial failure atomicity systems use undo logging [7,
1]. In undo logging systems, where incomplete transactions
are undone by applying undo log entries, the log entry must be
persistent before the corresponding data update, which results
in excessive persistence ordering constraints. In contrast, redo
logging systems only have to persist the logs at transaction
commit, but they need to intercept and redirect reads [8]. Prior
attempts to reduce the logging cost either target specific data
structures [2], double memory consumption by maintaining
an additional working set shadow copy [6], impose limitations
on programming model [4, 5] or relax the isolation model [3].

Among these systems, JUSTDO logging [4] proposed
recovery-via-resumption. In contrast to undo logging,
JUSTDO logging tracks enough program state to resume
a failure-atomic operation at recovery, resuming execution
from the interrupted instruction. Subsequent work in iDO log-
ging [5] dramatically reduces program state logging frequency
by exploiting idempotent code regions (a segment of code that
does not overwrite its input). However, their runtime overhead
remains quite high, and they strictly limit volatile data usage
during a failure-atomic operation.

3. Key Insight

Clobber-NVM [9] ensures failure-atomicity by reexecuting
any interrupted transactions at recovery and relies on a new
logging method — clobber logging. Clobber logging’s key
insight is that logging only overwritten inputs is sufficient to
reexecute a transaction with the exact same results. We call
a transaction input a clobbered input if it may be overwritten

within the transaction, and term this write a clobber write.
Clobbered inputs are a problem for reexecution: If an input is
clobbered during transaction execution, reexecuting the code
will use a new value for the input.

The observation behind clobber logging is that clobber
writes break reexecution — but undo logging them in a clob-
ber log can preserve the clobbered inputs. Values at other
addresses never need to be logged in clobber logging, since
they will be overwritten upon reexecution. Because inputs
which are not clobbered are expected to be available after a
failure, and clobbered inputs are preserved in the undo log,
clobber logging is sufficient for recovery.

Clobber logging drastically reduces the cost of failure atom-
icity. Clobber logging only logs a small set of selected values
— the clobbered inputs, whereas undo logging must log before
every writes in a transaction. Relative to prior recovery-via-
resumption systems, clobber logging reduces log frequency.
It only logs before a clobber write happens, while JUSTDO
logs at every store and iDO logs at every idempotent region
boundary and those regions tend to be small [5].

4. Main Artifacts

Our main artifact is Clobber-NVM, a combined compiler/run-
time library that enforces failure atomicity using clobber log-
ging.

The Clobber-NVM compiler extension, built on top of
LLVM, is used to identify clobber writes within transactions
using dependency analysis. It first identifies all possible input
reads and all possible clobber writes as candidates for clobber
logging. However, due to ambiguity in the analysis, it may
conservatively over-identify clobber writes leading to exces-
sive logging. Our compiler analysis subsequently refines the
result through novel analysis propagation. The propagation
reduces Clobber-NVM’s logging cost by avoiding logging at
writes that will never actually be clobber writes at runtime.

To support volatile data usage inside transactions, Clobber-
NVM uses a separate log (the vlog) to store minimal volatile
data needed to re-construct a transaction’s volatile input.

The Clobber-NVM runtime manages the clobber log and
the vlog. Our clobber log is built on PMDK'’s undo log API.
This design choice leaves Clobber-NVM’s clobber log very
simple. Clobber-NVM manages the vlog directly.

The Clobber-NVM runtime also manages recovery of in-
terrupted transactions after a crash. Figure 1(top row) shows
a transaction progressing through normal execution. A trans-
action interrupted by a crash follows a different path. As
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Figure 1: Recovery Process of One Transaction. The /n and
Out indicate addresses, instead of values — an output address
may be updated several times during the transaction.

with normal execution, the transaction starts with initial-
ized inputs and untouched outputs (Figure 1, top left), then
progresses through execution by writing to some output ad-
dresses(Figure 1, top center), including clobber writes.

However, a power failure during execution drops the transac-
tion to the recovery path. After the power loss, the transaction
loses all volatile memory and some NVM outputs that still
resided in the machine’s (volatile) caches (Figure 1, bottom
left). At restart, Clobber-NVM restores both the volatile and
clobbered inputs using the transaction’s logs, though the out-
puts may still be inconsistent (Figure 1, bottom center). With
its inputs restored, the transaction is reexecuted from the be-
ginning (Figure 1, bottom right).

Once the transaction executes past the point when the failure
happened, the transaction has overwritten any incomplete out-
puts, erasing any inconsistencies caused by the power loss (Fig-
ure 1, top center). The transaction will continue to progress to
completion and commit (Figure 1, top right).

5. Key Results

Figure 2 shows memcached performance on Clobber-NVM.
We make the following observations. First, Clobber-NVM
always outperforms Intel’s PMDK [7] and Mnemosyne [8],
two prior failure atomicity systems. It provides, on average,
1.7x and 2.1 x of PMDK and Mnemosyne performance, re-
spectively. Second, Clobber-NVM outperforms PMDK and
Mnemosyne more on write intensive workloads, because they
involve more logging operations. Third, on single thread work-
loads, Clobber-NVM outperforms PMDK and Mnemosyne
by up to 1.74x and 2.15 %, respectively. Because this version
of memcached uses a global lock to provide concurrency,
Clobber-NVM and PMDK, as lock-based systems, scales
poorly compared to Mnemosyne. We see their scalability
and performance improve on data structures with a finer-grain
locking scheme (see Figure 10 in the full paper).

6. Contributions

This paper makes the following contributions:

e It presents clobber logging, a novel, recovery-via-
resumption strategy that reduces log size by only recording
overwritten transaction inputs.

95% Insert, 5% Search 75% Insert, 25% Search

Throughput (M/s)
N IS
i 7
N} IS
j W

un
.

w
B>
>
>
>
>
w
>
>
>
B>
>

o

0
16 24 1 2 4 8
Thread Count

1 2 4 8
Thread Count

16 24

A~ PMDK  —@— Clobber-NVM  —»— Mnemosyne

Figure 2: Memcached Performance with 16-byte Keys and
64-byte Values

* It presents a clobber logging compiler pass for identifying
those transaction inputs that need to be logged.

It introduces Clobber-NVM, a compiler-based failure-
atomicity solution based on recovery-via-resumption.

¢ It demonstrates that Clobber-NVM’s performance compares
favorably with the existing state-of-the-art systems, pro-
viding up to 2.5x improvement over Mnemosyne and 2.6 x
over Intel’s PMDK. It shows Clobber-NVM reduces log size
by 1.1x to 42.6x and required expensive ordering fences
by 2.4 to 4.7 x relative to Intel’s PMDK.
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