
1

Clobber-NVM: Log Less, Re-execute More

Yi Xu, Joseph Izraelevitz, Steven Swanson

UC San Diego & University of Colorado, Boulder

Published on ASPLOS 2021

2

Persistent Memory Programming

Application

Cache

DRAMPMEM

3

Persistent Memory Programming

Application

Cache

DRAMPMEM

● Persistent memory is
byte-addressable.

● Persistent over power failures.
● Delivers DRAM-class latency/BW

PMEM

4

Persistent Memory Programming

Application

Cache

DRAMPMEM

The cache is volatile.
Cached updates will be
dropped after a power
loss.

Cache

5

Persistent Memory Programming

Application

Cache

DRAMPMEM

PMEM application needs crash consistency

6

Persistent Memory Programming

Application

PMEM Library

Cache

DRAMPMEM

● PMEM libraries provide
the means to apply sets
of writes to persistent
memory atomically.

● Unfortunately, most
current libraries impose
significant overhead.

PMEM library

7

PMEM Program with Undo Logging

void list_push(list_t *list,char* value){
undo_log(value, strlen(value));
persist_barrier();
memcpy(list->buf[list->size], value, strlen(value);
undo_log(list->size, sizeof(size_t));
persist_barrier();
list->size++;

}

PMEM program with undo logging

void list_push(list_t *list,char* value){
memcpy(list->buf[list->size], value, strlen(value);
list->size++;

}

DRAM program

8

PMEM Program with Undo Logging

void list_push(list_t *list,char* value){
undo_log(value, strlen(value));
persist_barrier();
memcpy(list->buf[list->size], value, strlen(value);
undo_log(list->size, sizeof(size_t));
persist_barrier();
list->size++;

}

PMEM program with undo logging

void list_push(list_t *list,char* value){
memcpy(list->buf[list->size], value, strlen(value);
list->size++;

}

DRAM program

9

PMEM Program with Undo Logging

void list_push(list_t *list,char* value){
undo_log(value, strlen(value));
persist_barrier();
memcpy(list->buf[list->size], value, strlen(value);
undo_log(list->size, sizeof(size_t));
persist_barrier();
list->size++;

}

PMEM program with undo logging

void list_push(list_t *list,char* value){
memcpy(list->buf[list->size], value, strlen(value);
list->size++;

}

DRAM program

1
0

PMEM Program with Undo Logging

void list_push(list_t *list,char* value){
undo_log(value, strlen(value));
persist_barrier();
memcpy(list->buf[list->size], value, strlen(value);
undo_log(list->size, sizeof(size_t));
persist_barrier();
list->size++;

}

PMEM program with undo logging

void list_push(list_t *list,char* value){
memcpy(list->buf[list->size], value, strlen(value);
list->size++;

}

DRAM program

Are the logs and barriers
necessary?

1
1

Recover Through Re-execution

PMEM

Writes

Reads

1
2

Recover Through Re-execution

PMEM

1
3

Recover Through Re-execution

PMEM

1
4

Recover Through Re-execution

PMEM

1
5

Recover Through Re-execution

PMEM

1
6

Recover Through Re-execution

PMEM

1
7

Recover Through Re-execution

PMEM

1
8

Recover Through Re-execution

PMEM

1
9

Recover Through Re-execution

PMEM

2
0

Recover Through Re-execution

PMEM

2
1

Recover Through Re-execution

PMEM

2
2

Recover Through Re-execution

PMEM

Re-execute on data that could
be inconsistent?

Use Clobber-NVM!

2
3

Clobber-NVM Program

void list_push(list_t *list,char* value){
txbegin();
memcpy(list->buf[list->size], value, strlen(value);
list->size++;
txend();

}

PMEM program with Clobber-NVM

Transaction
Boundary

2
4

Clobber-NVM Program

void list_push(list_t *list,char* value){
txbegin();
memcpy(list->buf[list->size], value, strlen(value);
list->size++;
txend();

}

PMEM program with Clobber-NVM

Transaction
Boundary

Input

2
5

Clobber-NVM Program

void list_push(list_t *list,char* value){
txbegin();
memcpy(list->buf[list->size], value, strlen(value);
list->size++;
txend();

}

PMEM program with Clobber-NVM
Transaction
Boundary

Input

Output

2
6

void list_push(list_t *list,char* value){
txbegin();
memcpy(list->buf[list->size], value, strlen(value);
list->size++;
txend();

}

PMEM program with Clobber-NVM

Clobber-NVM Program

Transaction
Boundary

Input

Output

Input &
Output

2
7

void list_push(list_t *list,char* value){
txbegin();
memcpy(list->buf[list->size], value, strlen(value);
list->size++;
txend();

}

PMEM program with Clobber-NVM

Clobber-NVM Program

Transaction
Boundary

Input

Output

Clobber
Input

2
8

void list_push(list_t *list,char* value){
txbegin();
memcpy(list->buf[list->size], value, strlen(value);
list->size++;
txend();

}

PMEM program with Clobber-NVM

Clobber-NVM Program

Transaction
Boundary

Input

Output

Clobber
InputA transaction input is a clobbered input if it may be overwritten

within this transaction, and this write is a clobber write. Clobber
Write

2
9

Clobbered Inputs

PMEM

Clobbered inputs are a problem for re-execution.

3
0

Clobbered Inputs

PMEM

Clobbered inputs are a problem for re-execution.

3
1

Clobbered Inputs

PMEM

Clobbered inputs are a problem for re-execution.

3
2

Clobber_Log before Clobber Writes

PMEM

Clobber
Log

Clobber_Log --- undo logs before clobber writes.

3
3

Clobber_log before Clobber Writes

PMEM

Clobber
Log

Writes

3
4

Clobber_log before Clobber Writes

PMEM

Clobber
Log

3
5

PMEM

Re-execute Based on Clobber_log

3
6

PMEM

Re-execute Based on Clobber_log

3
7

PMEM

Re-execute Based on Clobber_log

3
8

PMEM

Re-execute Based on Clobber_log

3
9

Re-execute Based on Clobber_log

PMEM

Clobber
Log

4
0

PMEM

Handle DRAM Accesses

DRAM

4
1

PMEM

Handle DRAM Accesses

DRAM

4
2

DRAM

Handle DRAM Accesses

PMEM

Clobber
Log

4
3

PMEM

Handle DRAM Accesses on v_log

DRAM

Clobber
Log

V Log

v_log stores volatile transaction inputs

4
4

PMEM

Handle DRAM Accesses

DRAM

Clobber
Log

V Log

4
5

PMEM

Handle DRAM Accesses

DRAM

4
6

PMEM

Handle DRAM Accesses

DRAM

v_log

4
7

PMEM

Handle DRAM Accesses

DRAM

v_log

4
8

Evaluation Setup

● Platform: two 24-core Intel Cascade Lake SP processors, running
at 2.2 GHz. The platform has a total of 192 GB of DRAM and 1.5
TB (6 ×256 GB) of Intel Optane DC Persistent Memory directly
attached to each processor.

● Configured Optane DCPMM in 100% App Direct mode.
● All experiments use Ext4 to manage persistent pools and directly

access NVM pages via DAX.

4
9

Data structure Benchmarks

5
0

Memcached Performance

5
1

Conclusion

● Clobber-NVM: Recovers by re-executing interrupted
transactions.

● Clobber-NVM compiler: Identifies necessary log entries,
and automatically adds logging for selected variables.

● Evaluation shows that Clobber-NVM has high
performance.

