
Clobber-NVM: Log Less, Re-execute More

Yi Xu
University of California, San Diego

La Jolla, USA
y4xu@eng.ucsd.edu

Joseph Izraelevitz
University of Colorado, Boulder

Boulder, USA
joseph.izraelevitz@colorado.edu

Steven Swanson
University of California, San Diego

La Jolla, USA
swanson@cs.ucsd.edu

ABSTRACT

Non-volatile memory allows direct access to persistent storage

via a load/store interface. However, because the cache is volatile,

cached updates to persistent state will be dropped after a power

loss. Failure-atomicity NVM libraries provide the means to apply

sets of writes to persistent state atomically. Unfortunately, most of

these libraries impose significant overhead.

This work proposes Clobber-NVM, a failure-atomicity library

that ensures data consistency by reexecution. Clobber-NVM’s novel

logging strategy, clobber logging, records only those transaction in-

puts that are overwritten during transaction execution. Then, after

a failure, it recovers to a consistent state by restoring overwritten

inputs and reexecuting any interrupted transactions. Clobber-NVM

utilizes a clobber logging compiler pass for identifying the minimal

set of writes that need to be logged. Based on our experiments, clas-

sical undo logging logs up to 42.6× more bytes than Clobber-NVM,

and requires 2.4× to 4.7×more expensive ordering instructions (e.g.,

clflush and sfence). Less logging leads to better performance:

Relative to prior art, Clobber-NVM provides up to 2.5× performance

improvement over Mnemosyne, 2.6× over Intel’s PMDK, and up to

8.1× over HP’s Atlas.

CCS CONCEPTS

· Hardware → Emerging technologies; Non-volatile mem-

ory; · Software and its engineering→ Software libraries and

repositories; Compilers; · Computer systems organization

→ Processors and memory architectures; · Information sys-

tems → Storage class memory.

KEYWORDS

Non-volatile Memory, Persistent Memory, Compiler, Storage Sys-

tems, Undo Logging, Clobber Logging

ACM Reference Format:

Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM: Log Less,

Re-execute More. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3445814.3446730

ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446730

1 INTRODUCTION

Non-volatile memories (NVMs) can expose persistent storage as

fast, byte-addressable main memory, and allow the processor to

access persistent data via load and store instructions directly using

the memory bus.

The durability of NVMs enables applications’ in-memory data

to live beyond process lifetimes and even across system reboots

and unexpected power failures, but leveraging this capability is

not simple. As caches are volatile, their contents cannot survive a

power loss, and, since caches may delay evicting a modified cache

line, writes may not reach NVMs in program execution order. These

limitations mean that in the case of an unexpected power loss, a set

of logically atomic updates may be torn with only a subset of them

reaching NVM, leaving persistent data in an inconsistent state.

NVM libraries aim to facilitate NVM programming. These li-

braries provide failure-atomicity for specified code regions: all

writes within a specified code region will survive a power loss

and become persistent in NVM, or none will. These transaction-

like, łall-or-nothingž semantics make programming on NVM easier

and hide architectural and caching details from programmers.

Failure-atomicity libraries give programmers the ability to des-

ignate failure-atomic code regions (transactions), but this support

comes with high performance overhead. Most industrial failure

atomicity systems [5, 48] use an undo logging approach. In undo

logging systems, where incomplete transactions are undone, the

logging of the old value must occur before each write. Undo-based

systems have an significant advantage in that reads do not need

be redirected via an interposition layer, but at the cost of many

expensive persistence ordering fences [46].

To avoid the high logging cost, JUSTDO logging [33] proposed

recovery-via-resumption. In contrast to undo logging, JUSTDO log-

ging tracks enough program state (including the program counter)

to resume a failure-atomic operation at recovery, resuming exe-

cution from the interrupted instruction. Subsequent work in iDO

logging [42] dramatically increased performance by exploiting re-

gions of code that are idempotent (a segment of code that does

not overwrite its inputs). However, the runtime overhead of these

systems remains quite high.

In this work, we propose Clobber-NVM, an NVM library that

ensures failure-atomicity by reexecuting interrupted transactions.

Clobber-NVM relies on a new logging method Ð clobber logging,

which merges undo logging with recovery-via-resumption. Clob-

ber logging undo logs any transaction inputs overwritten during

transaction execution. If a transaction is interrupted by a failure,

clobber logging recovers by first restoring the transaction’s over-

written inputs then, subsequently, reexecuting the transaction to

completion. This strategy result in our system requiring far less

logging than traditional undo-based systems since it only logs a

346

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446730
https://doi.org/10.1145/3445814.3446730
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3445814.3446730&domain=pdf&date_stamp=2021-04-17

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yi Xu, Joseph Izraelevitz, and Steven Swanson

few inputs Ð in our experiments we reduce the log sizes by 1.1× to

42.6×, and the log count (ordering fences) by 2.4× to 4.7×.

This paper makes the following contributions:

• It presents clobber logging, a novel, recovery-via-resumption

strategy that reduces log size and ordering fence frequency

by only recording overwritten transaction inputs.

• It presents a clobber logging compiler pass for identifying

those transaction inputs that need to be logged.

• It introduces Clobber-NVM, a compiler-based failure-atomicity

solution based on recovery-via-resumption.

• It demonstrates that Clobber-NVM’s performance compares

favorably with the existing state-of-the-art systems, provid-

ing up to 2.5× improvement over Mnemosyne and 2.6× over

Intel’s PMDK, and up to 8.1× improvement over HP’s Atlas.

The rest of this paper is organized as follows. Section 2 pro-

vides some background on NVMs and motivates Clobber-NVM.

We discuss the clobber logging design and Clobber-NVM system

implementation in Section 3 and Section 4, respectively. Section 5

showcases the performance of Clobber-NVM. We discuss related

work in Section 6 and conclude the paper in Section 7.

2 BACKGROUND

This section provides necessary background and clarifies assump-

tions about our target systems. We begin by describing the expected

machine model and programming model, then provide necessary

concepts for our program analysis.

2.1 Machine Model

Clobber-NVM is designed for a modern machine equipped with

some nonvolatile memory (e.g. Intel Optane DC PMM’s [32]). This

multicore, cache-coherent machine contains a set of processing

cores, with private and shared write-back caches. The caches con-

tain a program’s current working set, loaded from the backing

memory, which consists of both nonvolatile memory and tradi-

tional DRAM. Stores issued by the cores modify cache lines in the

caches; subsequent cache line evictions write the modified data

back to either volatile (DRAM) or nonvolatile memory, depending

on the cache line’s physical address. The hardware manages the

cache line eviction policy, it may not evict cache lines in the same

order they were modified. Moreover, writes are not persistent as

long as they reside in the volatile cache.

The existence of volatile caches with uncontrolled eviction poli-

cies means that the programmer needs to reason about the order in

which data updates reach nonvolatile memory. For example, in a

stack push() operation, the node must be created and made persis-

tent before pointed to by the top pointer. Otherwise the top pointer

could be evicted from the cache and become persistent, while its

target node, still in the volatile caches, could be lost in a power

outage, leaving behind a dangling, persistent, pointer.

To avoid these inconsistencies, programmers must use cache-

flush and memory-barrier instructions to enforce the ordering of

stores into NVM. For example, on Intel CPUs, the clflush or clwb

instructions explicitly force a dirty cache line into memory, and

sfence ensures subsequent writes will not complete until previous

flushes that issued before the sfence have reached memory. How-

ever, frequent ordering fences limit the overlapping of long-latency

flush instructions, result in high runtime overhead [28].

We expect hybrid machines with both NVM and DRAM in the

near term. It is important for the programmer to specify whether the

manipulated memory is volatile or not. Programmers can mark re-

gions of the program’s address space nonvolatile, and these memory

regions are associated each with some named file in a NVM-aware

file system [9, 57, 59]. In the event of a failure, the file system can

remap the file into another process’s address space for recovery

and further use. For managing, naming, and allocating from these

NVM regions/files, we leverage Intel’s PMDK library.

2.2 Programming Model

Clobber-NVM is one of many failure-atomicity libraries that provide

a simpler programming model for NVM: we describe this model

here. With these libraries, a programmer can designate a region of

code to be failure-atomic, that is, all of the code region’s effects will

survive a failure (e.g. power loss), or none will. Once the effects of

the code region are guaranteed to survive a crash, the operation

is committed. In general, in order to ensure failure-atomicity, it

is necessary to log extra information during normal execution to

support recovery after a failure. Recovery code can then use this

extra, logged information to clean up interrupted failure-atomic

operations and return back to a consistent state.

In the literature, these failure-atomic code regions (or operations)

are often termed failure-atomic sections (FASEs), or transactions.

Generally speaking, the boundaries of the transaction are program-

mer defined using some interface of the underlying failure atomic-

ity runtime. Note that these transactions are not traditional ACID

(Atomicity, Consistency, Isolation, Durability) transactions [25, 27]

Ð depending on the system, they may or may not provide isolation.

That said, many failure-atomicity libraries link failure atomicity

to concurrency control, either by building full ACID semantics or

marking lock-protected critical sections as failure-atomic regions.

Clobber-NVM is a recovery-via-resumption failure-atomicity

system. In these systems, interrupted transactions are resumed;

this strategy stands in contrast to more traditional undo [5, 48] and

redo [29, 41, 55] logging based systems, where interrupted failure-

atomic updates roll back. Recovery-via-resumption requires saving

sufficient program state such that resumption is possible.

Clobber-NVM uses an interface of transactions conceptually

compatible with Intel’s PMDK [48] library. Following this interface,

we expect the programmer to explicitly mark failure atomic trans-

actions. Furthermore, following PMDK’s concurrency model, we

expect transactions to acquire and release locks in a conservative,

strong strict two-phase locking pattern [49, 56]: that is, locks pro-

tect memory locations from data races; transactions acquire the

associated lock at transaction begin and in a fixed order (to prevent

deadlock); transactions hold the locks until transaction commit.

Assuming the programmer follows these constraints, both PMDK

and Clobber-NVM transactions provide true ACID semantics.

2.3 Program Analysis Definitions

Clobber-NVM’s design relies on compiler dependency analysis to

minimize the amount of logging needed for proper reexecution

347

Clobber-NVM: Log Less, Re-execute More ASPLOS ’21, April 19–23, 2021, Virtual, USA

and recovery of interrupted transactions. We describe key concepts

required for this analysis here.

A Clobber-NVM transaction is a programmer-delineated code

region with a single entry and (possibly) multiple exits. Following

standard terminology [15], a code region (resp. transaction) output

is a variable value which is assigned within the region and is live-

out from its exit. That is, a region output is a value written in

the region and read after it. Similarly, we define a code region

(resp. transaction) input to be a variable value that is live-in to the

region and used within the region. That is, a region input is a value

assigned before the region’s execution and read within it. Note that

both inputs and outputs refer to values, not variables (a natural

consequence of LLVM’s SSA-based [19, 21] program represention).

A code region is deterministic if, for a given set of inputs, it

always produces the same set of outputs. Clobber-NVM expects its

transactions to be deterministic, and to not cause runtime errors

or program exits (e.g., segmentation faults). This assumption is

universal for recovery-via-resumption systems [2, 33, 42].

3 CLOBBER LOGGING DESIGN

Clobber logging is a recovery strategy that minimizes logging calls

and log size by recording overwritten inputs to a transaction. If the

transaction is interrupted, recovery proceeds by restoring the over-

written inputs then reeexecuting the transaction. Clobber logging’s

key insight is that logging only overwritten inputs is sufficient

to reexecute a transaction with the exact same results, and, as a

consequence, values at other addresses never need to be logged,

since they will be overwritten upon reexecution.

Following the concepts introduced in Section 2.3, we deem a

transaction input a clobbered input if it may be overwritten within

this transaction, and term this write a clobber write. Clobbered

inputs are a problem for reexecution. If an input is clobbered during

transaction execution, reexecuting the code will use a new value

for the input.

3.1 Undo-Then-Reexecute

To understand how clobber logging can ensure failure atomicity,

we first describe a naive version of clobber logging that ignores

dependency analysis. We term this explanatory failure-atomicity

strategy undo-then-reexecute.

At every store, undo-then-reexecute records an undo log entry

containing the old, overwritten value. On recovery, it replays the

undo log backwards, leaving erasing all effects of the transaction.

Instead of stopping at this point (as conventional undo logging

would), undo-then-reexecute then reexecutes the transaction from

start to finish.

Undo-then-reexecute differs from classical undo logging in a few

notable ways. First, it recovers the program state to a point after the

interrupted transaction, as opposed to before. Second, once started,

a transaction never rolls back, so a transaction can be marked as

committed soon as it begins. Finally, undo-then-reexecute assumes

that inputs unmodified by the transaction will be available for

reexecution during recovery. In ourmachinemodel, this assumption

does not hold for data in DRAM or shared with other threads. Inputs

in volatile memorywill disappear during a power failure, and shared

inputs might change prior to reexecution.

User
Application

clobber_log
Analysis and

Instrumentation

NVM access
Instrumentation

v_log
Instrumentation

Compiler

Compile

clobber_log
Callback

v_log
Management

Recovery
Routine

Runtime

Link
Executable

Figure 1: Clobber-NVM system overview

A correct version of undo-then-reexecute must address these

challenges: First, it must make a persistent copy of volatile inputs so

they are available after restart. Second, it must adapt a concurrency

model that prevents transaction inputs from being changed after

being read and transaction outputs from being read before commit

(e.g. through its locking scheme).

3.2 Improving Performance

Undo-then-reexecute and undo logging are both slow since they

log the same information at every store. For a NVM library to opti-

mize undo-then-reexecute, it should attempt to remove extraneous

logging. First, it should understand what logging is truly necessary

in order to ensure that reexecution gives the same result. Second,

it should understand what logging operations are unnecessary be-

cause it will reexecute the transaction.

To ensure reexecution of a transaction gives the same result, the

transaction needs to be deterministic and have the same inputs

(arguments and memory state) as the previous interrupted execu-

tion. This is why the undo-then-reexecute strategy needs the łundož

step: it needs to revert the transaction’s clobbered inputs to their

unmodified state.

However, undo logging records more than the clobbered trans-

action inputs: it also records the old values before writes to the

transaction output addresses (e.g. modified memory locations). Tra-

ditional undo logging relies on these records to roll back the trans-

action’s changes. But undo-then-reexecute does not need to undo

its changes. Because it will reexecute the transaction, and the trans-

action will write the same values to the same memory locations,

any written data from the previous execution will be regenerated

and overwritten.

3.3 Clobber Logging

The clobber logging strategy is simply this: undo-then-reexecute,

but only undo log before clobber writes. Like any correct undo-then-

reexecute strategy on a persistent memory system, clobber logging

needs to preserve volatile inputs and adapt an appropriate concur-

rency scheme. Clobber logging optimizes undo-then-reexecute by

logging the clobbered inputs and ensuring all non-clobber inputs

are available during recovery. Then, it reexecutes the transactions

to produce the correct results. As we will show, clobber logging

require less logging and incurs lower runtime overheads than con-

ventional undo logging.

4 CLOBBER-NVM IMPLEMENTATION

The Clobber-NVM failure-atomicity system is a joint compiler/run-

time library. Key system components are shown in Figure 1.

348

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yi Xu, Joseph Izraelevitz, and Steven Swanson

Our compiler extension, built on top of LLVM [21, 37], is prin-

cipally used to identify clobber writes within transactions using

dependency analysis. Due to aliasing, this identification requires

significant reasoning about dependency chains. After this analysis,

the compiler adds callbacks to both clobber writes and to memory

accesses within transactions to automate logging and recovery.

Our runtime library manages the program during execution

and recovery. It catches callbacks inserted by the compiler and

programmer and directs the accesses to the appropriate logs. The

runtime manages two logs: the clobber_log, which logs clobbered

inputs, and the v_log, which logs volatile transaction inputs (inputs

that reside either on the stack or in the volatile heap and would not

be available during recovery. Usually these are function arguments).

The runtime will also initiate recovery of interrupted transac-

tions after a crash. Recovery, for each transaction, proceeds by first

restoring volatile state from the v_log and restoring clobbered state

from the clobber_log, then reexecuting the interrupted transac-

tion using the restored inputs.

To create a Clobber-NVM program, a developer needs to write

transactions in a manner that meets our programming model, com-

pile using our compiler with its extensions, and link to our runtime

library. Recovering a Clobber-NVM program is done by restarting

the program.

4.1 Using Clobber-NVM

Clobber-NVM’s C programming model is designed to be easily

used Ð most of its annotations and requirements have equivalents

in Intel’s PMDK library.

Figure 2(a) shows an example transaction written for Clobber-

NVM, which executes a persistent list insertion (the equivalent

PMDK C and C++ code are also shown). First, note the Clobber-

NVM transaction is isolated within a function (line 1), termed the

txfunc. Clobber-NVM’s compiler instruments the call-site to col-

lect the function name and its arguments within the v_log, and the

function provides a convenient handle to initiate reexecution.

Upon entering the function, the appropriate locks are acquired on

both persistent data (the list) and the volatile data (the new value).

As with PMDK, transactions must be synchronized using conserva-

tive, strong strict two-phase locking for proper recovery [51]. We

use the txbegin macro to start the actual transaction (line 4). As

we intend to use a volatile non-local pointer within the transaction,

we must record it using the vlog_preserve macro (line 5). With

locks acquired and volatile inputs recorded, we can execute the

transaction.

At the transaction’s beginning, we allocate memory from NVM

using the pmalloc interface (lines 6 and 7). Note that on line 12,

we will change the list head to the new node, thereby clobbering a

transaction input Ð this clobbered input will be identified automat-

ically by the compiler, and then recorded by the runtime. Also note

that Clobber-NVM does not require special macros when accessing

persistent memory Ð the appropriate callbacks are added by the

compiler. Assuming no power loss, the transaction will terminate

and commit with the txend macro (line 13), and release its locks

(line 14).

4.2 Runtime and Callbacks

Clobber-NVM’s runtime manages the program’s persistent state

during execution and recovery. This task requires it to manage a

few internal structures and to catch all necessary callbacks, added

by both the user and the compiler.

The user is responsible for invoking four callbacks. The txbegin

and txend macros inform the runtime of a starting or committing

transaction, triggering a persistent update of the transaction’s sta-

tus. The pmalloc macros informs the runtime to allocate memory

from NVM, instead of DRAM. As the application’s semantics de-

cide which sets of writes should happen failure-atomically and

which memory allocation should allocate from NVM, the compiler

is unable to assist with these callbacks. The vlog_preserve macro

informs the runtime that some volatile non-local pointer input

will be used during transaction execution Ð this input must be pre-

served persistently in the v_log. As compiler analysis is necessarily

incomplete with respect to the transaction’s read set, and as the

appropriate v_log callbacks must occur at transaction begin, the

developer must provide this information.

The compiler inserts other callbacks handled by the runtime.

The first type of callback occurs at possible clobber write sites.

This callback triggers a logging action in the runtime to record the

clobbered inputs in its clobber_log. The second callback occurs

at every memory access, and allows the runtime to appropriately

swizzle pointers to support relocatable backing NVM storage. The

final callback occurs on the top of txfuncs Ð this callback is used

to record soon-to-begin transaction, collects the function name and

its arguments.

Our runtime is implemented over Intel’s PMDK v1.6 libpmemobj

Ð it replaces the transaction, logging, allocation, and recovery man-

agement but preserves the user-facing interface for NVM region

management and crash detection. In particular, Clobber-NVM’s run-

time manages two key logging systems: the clobber_log, which

holds clobbered inputs, and the v_log, which holds both volatile

inputs and tracks ongoing transaction state. Every ongoing trans-

action maintains one log v_log entry.

Our clobber_log is built over PMDK’s undo log API. This de-

sign choice leaves Clobber-NVM’s clobber_log very simple, and

provides an additional benefit Ð as PMDK’s performance improves,

so does Clobber-NVM.

In contrast, the v_log is directly managed by the runtime. We

manage the per-thread v_log using a global linked list resident in

persistent memory, and allocate it on thread creation. The thread

will use this log to manage its (at most one) active transaction. Using

both the vlog_preserve macro and the compiler instrumented

callback on entry into the txfunc, the log records the function

arguments, function name and additional needed volatile data in

the log at transaction begin. We use a single bit in each v_log to

decide if re-execution is necessary on its corresponding thread.

When the transaction begins, it is marked as ongoing, and the bit

is cleared at commit.

4.3 Recovery

Clobber-NVM recovers NVM data to a consistent state via re-

execution. We here describe the Clobber-NVM’s recovery process.

349

Clobber-NVM: Log Less, Re-execute More ASPLOS ’21, April 19–23, 2021, Virtual, USA

1 void plist_ins(plist∗ lst, char∗ v,

2 size_t vsz, lock∗ v_lk){

3 lock(lst->lk); lock(v_lk);

4 txbegin();

5 vlog_preserve(v,vsz);

6 pnode∗ n = pmalloc(sizeof(pnode));

7 n->val = pmalloc(strlen(v));

8 strcpy(n->val, v);

9 n->nxt = lst->hd;

10 // lst->hd is a clobbered input

11 // and will be clobber logged

12 lst->hd = n;

13 txend();

14 unlock(lst->lk); unlock(v_lk);

15 }

(a) Clobber-NVM

16 void plist_ins(TOID(plist) lst,

17 char∗ v, lock∗ v_lk){

18 lock(lst->lk); lock(v_lk);

19 TX_BEGIN(pop){

20 TOID(struct pnode) n =

21 TX_NEW(struct pnode);

22 D_RW(n)->val =

23 TX_NEW(strlen(v));

24 TX_ADD_FIELD(n, val);

25 strcpy(D_RW(n)->val, v);

26 TX_ADD_FIELD(n, nxt);

27 D_RW(n)->nxt = D_RO(lst)->hd;

28 TX_ADD_FIELD(lst, hd);

29 D_RW(lst)->hd = D_RO(n);

30 }TX_END {}

31 unlock(lst->lk); unlock(v_lk);

32 }

(b) PMDK C

33 void plist::ins(char∗ v,

34 lock∗ v_lk){

35 auto p = pool_by_vptr(this);

36 transaction::run(p,[this,v]{

37 auto n =

38 make_persistent<pnode>(v);

39 strcpy(n->val, v);

40 n->nxt = this->hd;

41 this->hd = n;

42 },this->lk,v_lk);

43 }

(c) PMDK C++

Figure 2: List insert operation using PMDK and Clobber-NVM

Figure 3(top row) shows a transaction progressing through nor-

mal execution. At transaction begin (top left), its inputs are already

initialized and its outputs have not yet been touched. As the trans-

action executes (Figure 3, top center), it reads inputs, from both

NVM and DRAM, and writes to output addresses to both NVM and

DRAM. Note that some writes to output addresses may be clobber

writes and will overwrite some inputs. During normal execution,

the transaction will progress to completion and commit (Figure 3,

top right), completely writing all outputs.

A transaction interrupted by a crash follows a different path.

As with normal execution, the transaction starts with initialized

inputs and untouched outputs (Figure 3, top left), then progresses

through execution by writing to some output addresses (Figure 3,

top center), including clobber writes. However, a power failure

during execution drops the transaction to the recovery path.

After the power loss, the transaction loses all volatile memory

and some NVM values that still resided in the machine’s (volatile)

caches (Figure 3, bottom left). At restart, Clobber-NVM first detects

if there are any uncommitted, ongoing transactions using the per-

thread v_logs. Using the transaction’s logs, Clobber-NVM restores

both the volatile and clobbered inputs, though the values at output

addresses may still be inconsistent (Figure 3, bottom center).

With its inputs restored, the transaction is ready to restart (Fig-

ure 3, bottom right). Clobber-NVM recovers each thread indepen-

dently Ð a valid strategy since our locking scheme ensures all

ongoing transaction lock sets are disjoint. To recover a transaction,

the corresponding txfunc is called, reexecuting the transaction

from the beginning. Once the transaction executes past the point

when the failure happened, the transaction has overwritten any

incomplete values, erasing any inconsistencies caused by the power

loss (Figure 3, top center). The transaction will continue to progress

to completion and commit (Figure 3, top right).

4.4 Compiler

Clobber-NVM compiler identifies clobber writes and insert other

utility callbacks.

The first compiler pass identifies writes within a transaction that

may clobber an input, then instruments the clobber_log callback

before the writes happen. This pass relies on classic alias analysis

Txn

NVM

DRAM

In
Out

Txn

Out
In

NVM

DRAM

Out
In

Txn

In

NVM

DRAM

In
Out

Txn

In

NVM

DRAM

In
Out

Out

Txn

Out
In

NVM

DRAM

In
Out

Start

Execution

Power

Failure

Restore

Input

from

Logs

Restart

Execution

Continue

Execution

Finish

Execution

Txn

Out
In

NVM

DRAM

In
Out

Figure 3: Recovery process of one transaction. The In

and Out indicates input and output addresses within both

DRAM and NVM.

to identify clobber writes. However, this basic alias analysis is not

necessarily precise and may over identify clobber writes, though

this is a performance, not a safety issue. The pass subsequently

refines the result through novel analysis propagation.

Then the second pass adds callbacks to all memory accesses:

these callbacks allow the system to intercept accesses to NVM and,

as necessary, swizzle the pointers to redirect the accesses to the

relocatable backing region. Finally, the third pass instruments the

code for recovery: it adds v_log callbacks to the txfunc to record

their names and arguments.

Clobber-NVM’s compiler is built on top of LLVM [21, 37]. We

use clang [17] as the frontend compiler to translates C/C++ code to

LLVM IR, and introduce the three passes [20] described above to

the LLVM compiler toolchain. All passes operate on LLVM IR [19].

In the remainder of this subsection, we describe our clobber

write identifying pass in detail, starting with the conservative im-

plementation, then describing our iterative refinement.

Conservative ClobberWrites Identification Clobber-NVM’s

conservative clobber write identification follows two steps. The

first step identifies candidate input reads, that is, reads that could

conceivably be the first operation on a value. The second step uses

these reads to find candidate clobber writes, that is, writes that

could conceivably overwrite an input. Note that both steps are

conservative Ð all possible input reads and all possible clobber

writes will be candidates.

350

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yi Xu, Joseph Izraelevitz, and Steven Swanson

0:wr()

1:rd()

2:rd()

3:rd()

4:wr()

5:wr()

6:wr()

must same address

maybe same address

0:wr()

1:rd()

2:rd()

3:rd()

4:wr()

5:wr()

6:wr()

1. Find candidate input reads 2. Find candidate clobber writes

Figure 4: Conservative candidate clobber write identifica-

tion

0:wr()

1:rd()

2:wr()

0:rd()

1:wr()

2:wr()

0:rd()

1:wr()

2:wr()

0:rd()

1:wr()

2:wr()

Shadowed: earlier write clobbers input
Unexposed: earlier

write removes input

must same address

maybe same address

Figure 5: Removing false candidate clobber writes

The identification pass relies on LLVM alias analysis [18] to

identify candidate input reads and clobber writes. Alias analysis

produces pair-wise results that indicate two memory accesses (1)

cannot, (2) may or (3) must point to the same location.

Using alias analysis, the first step traverses all reads in the trans-

action, searching for candidate input reads. Reads that are dom-

inated by an earlier write (all paths to the read first execute the

write), and whose dominating write must modify the same address,

cannot be candidate input reads. All other reads are labeled as a

candidate input read. Figure 4(left) shows this process.

In the second step, the compiler identifies candidate clobber

writes for each candidate input read. Candidate clobber writes

include all successor writes (writes that may be executed after the

input read) that may write to the same address as the input read.

Figure 4(right) shows this identification.

At this point, the compiler has conservatively identified all clob-

ber writes, but some candidates may never overwrite an input.

Figure 4(right) shows an example of such a candidate clobber write

on line 6: the input will already be clobbered on line 5.

DependencyAnalysis Propagation To reduce Clobber-NVM’s

logging cost, we perform additional dependency analysis propaga-

tion to remove candidate clobber writes that, upon further analysis,

can never be true clobber writes. We target two general types of

false clobber candidates.

The first type of false clobber candidate we term unexposed.

This false candidate may indeed be the first write to overwrite a

candidate input, but, if it does Ð it is provable the input candidate

is a false input. The scenario is shown in Figure 5(left). In this

scenario, the candidate input read is dominated by some earlier

write. Since the earlier write and the read may not access the same

location, the read is considered a candidate input. The subsequent

write may also access the read’s location, and so it is considered

to be a clobber candidate. However, both writes are guaranteed to

access the same location through alias analysis Ð as a consequence,

if the later write overwrites the read, the read cannot be an input

(it will be dominated by the earlier write).

The second type of false clobber write candidate is a candidate

which is shadowed by some earlier clobber write. A shadowed

candidate may indeed overwrite an input, but if it does, it is guaran-

teed that some earlier write already clobbered it. This relationship

requires two conditions. First, it requires some earlier write to dom-

inates the shadowed write. Secondly, the alias relationship between

the input read, earlier write, and shadowed write must ensure that

if the shadowed write does overwrite the input, the earlier write

will have first. There are three alias combinations between the three

accesses that meet these criteria: they are shown in Figure 5(right).

In practice, this kind of false candidate occurs often in loops: the

first iteration clobbers the input, but subsequent iterations do not

need to log.

Our analysis searches for both types of false clobber candidates

by iterating over every pair of a candidate clobber write and its

corresponding input read, and then looking for an additional write

that would then form one of these four cases.

5 EVALUATION

In this section, we evaluate Clobber-NVM’s performance to provide

answers to the following questions:

• How much improvement does Clobber-NVM provide for

persistent data structures compared to other libraries?

• What is the reason for Clobber-NVM’s high performance?

• What is Clobber-NVM’s recovery overhead compared to

PMDK?

• What is Clobber-NVM’s performance on application-level

code?

• How does the underlying data structure of an application

affect its performance when build with Clobber-NVM?

• What is the effectiveness of Clobber-NVM compiler opti-

mization?

• How much longer does it take for an application to compile

with Clobber-NVM, compared to Clang?

Our experimental workloads include four data structure bench-

marks and three recoverable applications.

5.1 Evaluation Setup

We compare against three popular NVMM libraries with Clobber-

NVM.

PMDK [48] is Intel’s failure atomicity library. Its later versions

use hybrid undo-redo logging techniques [30]. The technique is

based on a combination of undo logging for modify a group of

memory atomically and redo logging for memory allocation and

deallocation [52]. Based on our experiments, PMDK v1.6 generally

provides the best performance among all available versions Ð we

show this version in all experiments.

Atlas [5] is another undo-log system that allows for complicated

locking schemes within failure-atomic regions. It uses lock opera-

tions to infer failure-atomic operation boundaries. Due to its weak

concurrency requirements, Atlas tracks dependencies between fail-

ure atomic operations and is prepared to rollback even completed

351

Clobber-NVM: Log Less, Re-execute More ASPLOS ’21, April 19–23, 2021, Virtual, USA

operations Ð this dependency tracking incurs signficant runtime

cost [33].

Mnemosyne [55] is a redo-log based system. Unlike the other

systems, it uses the C++ transactional memory model to parallelize

code, instead of using locks.

Prior recovery-via-resumption systems (JUSTDO [33] and iDO [42])

do not have publically available implementations. To compare

Clobber-NVM’s performance with their’s, we implemented a com-

piler instrumentation pass to collect iDO’s transaction information.

We run the benchmarks on a platform with two 24-core Intel

Cascade Lake SP processors, running at 2.2 GHz. The platform has

a total of 192 GB of DRAM and 1.5 TB (6 ×256 GB) of Intel Optane

DC Persistent Memory directly attached to each processor [32].

We configured our test machine such that Optane DCPMM is in

100% App Direct mode [1]. In this mode, software has direct byte-

addressable access to the Optane DCPMM. All experiments use

Ext4 to manage persistent pools and directly access NVM pages

via DAX [40].

5.2 Data Structure Benchmarks

In our first experiment, we compare Clobber-NVM’s throughput

with comparison systems on data structure benchmarks:

B+ Tree uses reader-writer locks at the granularity of individual

nodes, stores keys in the internal nodes, and adds both the key and

the value to the leaf nodes.

HashMap is adapted from the PMDK repository [31]. We create

256 instances of the HashMap, treat each one as a bucket, and

protect each bucket with a reader-writer lock.

Skiplist is a skiplist with 32 levels. We use a single global lock

for the entire data structure.

Red-Black Tree is implemented in accordance with the version

in Linux kernel. We use a global reader-writer lock for the tree.

On all data structures except B+ Tree, we insert key-value pairs

with key size 8 bytes and value size 256 bytes. On B+ Tree, the

inserted key size is 32 bytes. The benchmark runs YCSB [12] work-

loads against different versions of the data structures. It populates

each structure with 1 million entries (YCSB-Load workload).

Wemake the following observations. Firstly, for single thread, be-

cause undo-log entries are immediately followed by fence instruc-

tions, the number of log entries imposes more latency on Clobber-

NVM and undo-log systems compared to redo-log systems like

Mnemosyne. Hashmap insertion is relatively simple. So Clobber-

NVM shows over 2.13× performance of Mnemosyne on hashmap

benchmark. B+ Tree has the longest transaction. Mnemosyne can

provide performance comparable to Clobber-NVM, despite it actu-

ally logs much more data.

Secondly, Clobber-NVM always outperforms undo log systems

significantly on one thread. PMDK undo log shares the same log-

ging subsystem with Clobber-NVM clobber_log. But it usually

does significantly more undo log entries. Therefore, Clobber-NVM

shows 1.82× of its performance on average, and can perform up

to 2× compare to it on hashmap and skiplist. Atlas has to track

dependencies between transactions, which imposes significant run-

time overhead. On average, Clobber-NVM provides 4.3× of Atlas

performance.

Thirdly, on multithread workloads, scalablility of Clobber-NVM

and other lock-based system is mostly determined by the locking

scheme. It is the programmer’s responsibility to use finer gran-

ularity locks, in order to achieve good scalablility. For example,

Clobber-NVM shows the best scalablility on B+ Tree among all data

structures, since it uses per node granularity locks. Clobber-NVM

provides 1.8× of Mnemosyne performance, 6.6× of Atlas perfor-

mance, and 1.9× of PMDK performance. Since PMDK and Clobber-

NVM rely on the same underlying lock scheme, they scale similarly

across all data structures. Clobber-NVMoutperforms PMDK by over

1.9× across all data structures with 24 threads. On data structures

with a single global lock, Mnemosyne scales better than Clobber-

NVM and PMDK, result in matching Clobber-NVM performance

on rbtree and skiplist with 24 threads.

5.3 Performance Breakdown

In this experiment, using the same data structure benchmarks, we

incrementally enable different logs in Clobber-NVM and PMDK (full

undo log) to understand where the performance costs of Clobber-

NVM reside.

No-log is the baseline performance, where the data structures

do not do any logging. Clobber-NVM-vlog only does v_log in

Clobber-NVM. Clobber-NVM-clobberlog is Clobber-NVM that

only enables clobber_log. These three systems are not failure-

atomic. Clobber-NVM-full represents the full version of Clobber-

NVM. It does both v_log and clobber_log. PMDK shows PMDK’s

performance. It does full undo log for each transaction.

Here, we use one thread to insert key-value pairs from YCSB

benchmark. Figure 7 shows the measured logging overhead on

different data structure. In our evaluated workloads, Clobber-NVM-

vlog always have one log entry per transaction. Clobber-NVM-

clobberlog typically use 15.8% to 39.5% as many log entries as PMDK

per transaction, Clobber-NVM, in total, uses 21.5% to 42.3% as many

log entries as PMDK. Regarding the log size, PMDK requires 16.7× to

154.5× more bytes compared to Clobber-NVM-clobberlog. PMDK’s

log size is 1.2× to 58× of Clobber-NVM-vlog’s log size, and 1.1× to

42.6× of Clobber-NVM’s log size, depending on the data structure.

The comparison between Clobber-NVM-vlog and PMDK shows

that v_log is very cheap due to its implementation. On all data

structures, a great portion of log bytes are used in v_log (more

than 70%), but Clobber-NVM-vlog’s performance is comparable to

No-log on most data structures. The high performance of v_log

comes from two perspective Ð The v_log entry count is always

one for the whole transaction, result in only two necessary fences.

And the pre-allocated v_log buffer made it much faster compared

to traditional undo log entry.

Most of Clobber-NVM’s overhead is imposed by clobber_log.

Generally speaking, fewer log entries and smaller log size result in

better performance. And log entry count usually matters more than

log size, which is consistent with the fact that a fence is usually

more expensive than a flush.

The only exception is the hashmap. Its Clobber-NVM-vlog ver-

sion performs 10% slower than its Clobber-NVM-clobberlog ver-

sion, indicating that most of Clobber-NVM’s overhead is caused

by v_log on the hashmap insertion benchmark. On this bench-

mark, its clobber_log log count is one, and its log size is 8 bytes.

352

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yi Xu, Joseph Izraelevitz, and Steven Swanson

1 2 4 8 16 24
Thread Count

0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

op
s)

B+ Tree

1 2 4 8 16 24
Thread Count

0

1

2

3
Hashmap

1 2 4 8 16 24
Thread Count

0

0.1

0.2

0.3

0.4

0.5

Red-black Tree

1 2 4 8 16 24
Thread Count

0

0.05

0.1

0.15

0.2

Skiplist

PMDK Atlas Clobber-NVM Mnemosyne

Figure 6: Measuring the throughput of different NVM libraries: each data structure is scaled up to 24 thread. Clobber-NVM

shows better performance over other libraries on all data structures

B+ Tree Hashmap Rbtree Skiplist
0

10

20

30

Co
un

t

Log Count

B+ Tree Hashmap Rbtree Skiplist
10

100

1000

10000

By
te

s

Log Size per Transaction

B+ Tree Hashmap Rbtree Skiplist
0

0.25

0.5

0.75

1

1.25

Th
ro

ug
hp

ut
 (M

op
s)

Performance

No-log(Baseline)
 PMDK (Full Undo Log)

 Clobber-NVM-vlog
 Clobber-NVM-clobberlog

 Clobber-NVM-full

Figure 7:Measuring the overhead of different logging strategies: different log count and log size result in different performance.

The operated key-value pair has key size 8 bytes (32 bytes for B+ Tree), and value size 256 bytes.

Because the v_log log size is much larger than the clobber_log

log size, v_log component causes more latency than clobber_log

component on the hashmap insertion.

5.4 Comparison to iDO

iDO is a state-of-the-art recovery-via-resumption library. iDO’s

compiler pass breaks transactions into a series of idempotent re-

gions, logging at the boundary between idempotent regions Ð fail-

ure during an iDO transaction triggers the reexecution of the idem-

potent code region, followed by the resumption of the remainder

of the interrupted transaction. Because its code is not publically

available, we reimplemented a compiler instrumentation pass to

instrument the code, and collect transaction information as iDO

would have.

iDO will always have the at least as many bytes persisted per

transaction as Clobber-NVM. iDO’s strategy of logging at the bound-

ary of idempotent code regions requires larger log entries than

Clobber-NVM Ð the log entries at each boundary require a snap-

shot of most registers, plus a flush and fence for any modified

memory location. The strategy generally also incurs more logging

calls than Clobber-NVM’s logging of clobber writes. Clobber-NVM

only needs to logwhen awrite clobbers a transaction input, whereas

iDO logging needs to log whenever a write clobbers an idempotent

region’s input (all transaction inputs are included in some region’s

input, but not all region inputs are transaction inputs as they may

be intermediate state local to the transaction). Additionally, iDO

places the program stack in persistent memory to avoid the need of

B+ Tree Hashmap Rbtree Skiplist
0

20

40

60

80

Co
un

t

Log Count

B+ Tree Hashmap Rbtree Skiplist
0

500

1000

1500

2000

By
te

s

Additional Bytes Persisted

Clobber-NVM iDO

Figure 8: Clobber-NVM and iDO log size per transaction

manually copying stack variables into the persistent heap on FASE

initialization [42] (the purpose of our v_log), but consequently

needs to track accesses to stack variables during transaction execu-

tion and log them if necessary.

As shown in Figure 8, iDO not only requires more logging points,

it also persists significantly more data. It logs 1× to 23× more

frequently compared to Clobber-NVM, depending on the specific

data structures and workload. On average, iDO logs 4.2×more bytes

than Clobber-NVM, and it logs up to 7.2× more bytes on skiplist

benchmark.

5.5 Recovery Overhead

In this experiment, we compare Clobber-NVM’s recovery overhead

with PMDK’s recovery overhead on the same four data structures.

Clobber-NVM’s recovery process is composed by three steps. Firstly,

it opens the persistent pool. Secondly, it applies the clobber_log

entries to their corresponding addresses. Lastly, it reads v_log

and re-executes the interrupted transactions based on valid v_log

353

Clobber-NVM: Log Less, Re-execute More ASPLOS ’21, April 19–23, 2021, Virtual, USA

B+ tree Hashmap Rbtree Skiplist
0

20

40

60

80

100

Re
co

ve
r T

im
e

(m
s)

Pool-management PMDK Clobber-NVM

Figure 9: Recovery overhead on different data structure

entries. PMDK share the first two steps with Clobber-NVM, but in-

stead of applying clobber_log on selected addresses, it reads undo

log entries of uncommitted transactions, and rolls back the transac-

tion by rewriting the values in undo log to all pmem variables that

were updated in the transactions.

We randomly crash the data structure benchmarks, and measure

the average recovery overhead. As shown in Figure 9, the recovery

latency of Clobber-NVM and PMDK are similar. Most of their recov-

ery latency is spent on pool managements. PMDK showsmarginally

lower recovery overhead on bptree, rbtree and skiplist, but Clobber-

NVM recovers slightly faster on hashmap. When most of writes

in a interrupted transaction are not clobber writes, Clobber-NVM

would have less and shorter clobber_log entries recorded. And if

the latency of re-execution on the interrupted transaction is small,

Clobber-NVM is likely to have lower recovery overhead.

5.6 Memcached

Memcached [44] is a production-quality key-value store. It is al-

ready integrated with Mnemosyne [45], and we modified its volatile

version to use both PMDK and Clobber-NVM. Memcached is con-

sists of a server side and a client side. We used the tool memslap [38]

as the client to generate a stream of Memcached requests according

to a desired distribution. We used 4 client threads, which gener-

ated requests with uniformly distributed 16-byte keys and 64-byte

values.

We experimented with 4 types of workloads: insertion-intensive

(95% insertion / 5% search), insertion-most (75% insertion / 25%

search), search-most (25% insertion / 75% search), and search-intensive

(5% insertion / 95% search). As shown in Figure 10, Clobber-NVM

outperforms PMDK and Menmosyne on all workloads. Clobber-

NVM’s clobber_log entry count is always smaller than redo/undo

log entry count. And the per transaction v_log is less expensive. It

outperforms PMDK and Menmosyne more on more insert intensive

workloads, because PMDK and Menmosyne require more log en-

tries. On more search intensive workloads, more operations do not

involve logging mechanisms. Clobber-NVM’s performance gain is

smaller. But the longer read path of redo-log based system result in

lower performance of Menmosyne compared to both Clobber-NVM

and PMDK.

Clobber-NVM provides up to 2.5× of Menmosyne’s throughput

and 1.8× of PMDK’s throughput on single thread workloads. How-

ever, older versions of memcached were notorious for exhibiting

poor scaling due to coarse-grain locking [16, 42]. Therefore, we re-

place the exclusive lock in its original code with spinlock and reader-

writer lock. As expected, spinlock works better for insert-intensive

workloads, and reader-writer lock provides better scalablility for

search intensive workloads.

5.7 Vacation

We also evaluated the STAMP benchmark suite’s vacation applica-

tion [8] performance with Clobber-NVM, PMDK and Mnemosyne.

Vacation simulates the transactions of a travel agency, and transac-

tions span several tables simulating travel booking reservations.

Vacation is consists of four tables. Similar to prior implemen-

tations [28] [55], we persist the tables in persistent memory, and

leave the client threads in volatile memory. The tables are originally

implemented on red-black trees. Here, we also replace it with an

AVLtree implemented in the STAMP suite [8] to show the appli-

cations performance on a different underlying data structure. The

database has 100000 records of each reservation item. The workload

is consisted by 99% of item reservation of cancellation, and the rest

create or destroy items. We adjust the number of queries per task to

create different workloads. Again, we use No-log as the baseline.

Figure 11 shows that No-log, PMDK, and Clobber-NVM performs

17%, 9% and 7% better on avltree version compared to the red-black

tree version, indicating that the undo log entries (and clobber_log

entries) are data structure dependent, but the v_log entries in

vacation are the same across different underlying data structures.

Because the number of queries per task indicate the propotion

of read in one transaction, the logging overhead of PMDK and

Clobber-NVM decreases when the number of queries per task in-

creases. When the query number is six, PMDK and Clobber-NVM’s

overhead is 74% and 68%, respectively. We also find that, v_log size

increases as the read propotion increases. Therefore, Clobber-NVM

outperforms PMDK more with less number of queries per task.

Since Mnemosyne is a redo-log based system, its logging overhead

increases as the number of queries per task increases. Its overhead

compared to the No-log baseline increases from 176% to 200%.

5.8 Yada

Yada, also from the STAMP suite [8], is a volatile mesh refinement

application. It implements Ruppert’s algorithm for Delaunay mesh

refinement [50]. The input mesh is refined so that it has a certain

minimum angle. We use the data files ttimeu10000.2 provided in the

STAMP suite as input, which is consisted of 19998 elements. Here,

we compare Clobber-NVM performance with PMDK performance.

Again, No-log is the baseline performance in which the applica-

tion is running without any logging mechanisms. We persist the

graph that stores all the mesh triangles, the set that contains the

mesh boundary segments, and the task queue that holds the trian-

gles that need to be refined. We set the angle constraining from 15

degrees to 30 degrees, and show each version of Yada performances.

Figure 12 shows that, on all angle constraints, PMDK imposes

about 42% overhead compared to No-log version. Clobber-NVM

reduces the overhead to about 27%. Because Yada is more compute

intensive compared to key-value stores. The logging overhead on

Yada is low. Therefore, the potential optimization space of Clobber-

NVM is small.

354

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yi Xu, Joseph Izraelevitz, and Steven Swanson

1 2 4 8 16 24
Thread Count

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

/s
)

95% Insert, 5% Search

1 2 4 8 16 24
Thread Count

0

1

2

3

4

5
75% Insert, 25% Search

1 2 4 8 16 24
Thread Count

0

2

4

6

25% Insert, 75% Search

1 2 4 8 16 24
Thread Count

0

2

4

6

8

5% Insert, 95% Search

PMDK-RW PMDK-Spin Clobber-NVM-RW Clobber-NVM-Spin Mnemosyne

Figure 10: Memcached Performance on Different Workloads and Threads

1 2 3 4 5 6
Number of Queries per Task

0

2

4

6

8

10

Co
m

pl
et

io
n

Ti
m

e
(s

)

Nolog-avltree
PMDK-avltree
Clobber-NVM-avltree

Nolog-rbtree
PMDK-rbtree

Clobber-NVM-rbtree
 Mnemosyne

Figure 11: Vacation performance on different data structure

15 20 25 30
Angle Constraint

0

5

10

15

Co
m

pl
et

io
n

Ti
m

e
(s

)

No-log (Baseline) PMDK Clobber-NVM

Figure 12: Yada Performance on Different Angle Constrain-

ing

5.9 Optimization Effectiveness

Clobber-NVM compiler passes identify potential clobber writes. In

order to reduce the overhead introduced by conservative identi-

fication, Clobber-NVM performs additional dependency analysis

propagation to remove false clobber candidates, as introduced in

Section 4.4. We show performance improvement by avoiding re-

dundant clobber_log on the four data structures and three appli-

cations in Figure 13.

On the four data structures, skiplist shows the most performance

improvement of up to 15%. We find that the compiler pass removes

two clobber candidates out of five, end up requiring only three

clobber_log entries per transactions. On memcached workloads,

the one consisted by 95% insert and 5% search requests improves the

most, to 15%. As can be expected, the avoided clobber_log entries

are on the write request path. The unoptimized version incurs up

to 32% more clobber_log entries and 47% more bytes. Among

the three STAMP applications, Yada shows the most performance

improvement. It improves its performance by 2.4%, and reduces its

clobber_log frequency by 36%.

The effectiveness of compiler optimization pass is application

and workload dependent, we expect one application to benefit from

the optimizations when:

• Its transaction is long, and is consisted mostly by writes.

• Its memory accesses follows certain patterns. For example,

it updates and reads an address at each iteration of a loop.

• Its latency is mainly imposed by the logging.

5.10 Compile Time Overhead

Clobber-NVM relies on compiler analysis and instrumentation. In

this experiment, we show the compile time overhead of Clobber-

NVM. We compare the compilation latency of Clobber-NVM with

Clang-7.0.0. Figure 14 shows the compile latency of four data struc-

tures and three applications.

The compile overhead is similar among four data structures,

Clobber-NVM adds 29% latency on average. Clobber-NVM takes

55% longer than Clang on memcached. The higher compilation

latency is because we compile all files of memcached projects with

Clobber-NVM compiler, while only compile the files that has pmem

accesses in data structure benchmarks. With more accurate identi-

fications of memcached pmem accesses, the compilation latency is

expected to be lower. The STAMP applications also show higher

compilation overhead. Since in these applications, pmem accesses

are spread across relatively more files, the code analysis and instru-

mentation also takes longer.

6 RELATED WORK

Researchers have proposedmanyNVM-optimized data structures [6,

11, 22, 47, 54, 60], and the architecture community has been work-

ing on better hardware support for failure-atomicity [3, 14, 24, 34,

35, 53]. Recently, the research community has also focused on using

persistent memory for specific applications [7, 39]. For example,

researchers [39] proposed creating failure atomic GPU kernels by

leveraging idempotence to reduce logging cost, taking advantage

of the necessary copies used for GPU kernel execution. However,

high efficiency general purpose libraries based on commodity hard-

ware is still an open research area. Undo log approach includes

NV-heaps [10], Atlas [5], and PMDK-v1.4 [48]. Mnemosyne [55]

SoftWrAP [23] and NVthread [10] relies on redo logs. Undo-logging

355

Clobber-NVM: Log Less, Re-execute More ASPLOS ’21, April 19–23, 2021, Virtual, USA

B+ tree Hashmap Rbtree Skiplist
0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

op
s)

Data structures

95%Insert 75%Insert 25%Insert 5%Insert
0

1

2

3

4

Th
ro

ug
hp

ut
 (M

/s
)

Memcached

Vacation-rb Vacation-avl Yada
0

1

2

3

Co
m

pl
et

io
n

Ti
m

e
(s

)

STAMP applications

Unoptimized-Clobber-NVM Optimized-Clobber-NVM

Figure 13: Optimization effectiveness on data structures and applications

B+ tree Hashmap Rbtree Skiplist Memcached Vacation-rb Vacation-avl Yada
0

1000

2000

3000

Co
m

pl
et

io
n

Ti
m

e
(m

s)

CLANG-Compiler Clobber-NVM-Compiler

Figure 14: Compile latency on data structures and applica-

tions

systems usually requires expensive ordering fences at least pro-

portional to the number of contiguous data ranges modified in

each transaction. In contrast, redo-logging implementations gen-

erally require fewer ordering fences regardless of the transaction

size. However, their load interposition and load redirection to up-

dated NVM addresses slows down read speed and increases system

complexity.

A number of systems were proposed to optimize redo/undo sys-

tems by maintaining a shadow copy of working set during runtime.

Kamino-Tx [43] relies on dual NVM copies to achieve memory per-

sistence. Romulus [13] uses a volatile redo-log with a shadow copy

in NVM. Both DudeTM [41] and NV-HTM [4] uses a persistent redo-

log with shadow copy stored in DRAM. PMThread [58] maintains a

DRAM copy and an additional NVM copy. All of these approaches

at least double the memory consumption of the application as at

least two copies of the data are maintained. Clobber-NVM only

have log entries during an update operation, the additional space

overhead will usually be even much smaller than conventional redo

and undo log systems.

Currently, NVM failure-atomicity systems have operation se-

mantics that rely on either lock-inferred failure atomic sections

(FASEs) [5, 29, 33, 42], classical transactions [4, 41, 43, 55] or pro-

grammer delineated transaction boundarywith a proper lock scheme [23,

48]. Several recent works optimize scalability by relaxing the tradi-

tional ACID semantics. Pisces [26] exploits snapshot isolation on

persistent memory, and TimeStone [36] provides three isolation

levels to user and achieves higher concurrency on more relaxed

isolation model. Compared to these libraries, we target applications

that require full ACID semantics.

A recent line of works provide better performance by only ensure

periodic persistence [47] [11] [58]. By periodic persistence, their

consistency guarantees is made at per-epoch granularity, as oppose

to per failure-atomic operation in Clobber-NVM and most other

systems [5, 42, 48, 55]. In these periodic persistence systems, after

failure, persistent data will be recovered to the state of the last

completed epoch.

In JUSTDO [33] and iDO [42] logging, the system recovers by re-

suming execution of the interrupted failure-atomic section. JUSTDO

logs and persists the program counter, the to-be-updated address,

and the value to be written before each store happens. Because

of the high cost to operate on conventional machines, JUSTDO

assumes it will work on a machine with persistent cache. Its succes-

sor, iDO logging, avoids logging before individual stores by using

compiler-support to identify idempotent regions and instruments

adds logging at their boundaries (almost all idempotent regions

contain fewer than 4 writes). iDO logs and persists program state -

registers, live stack variables, and the program counter. Clobber-

NVM is different from JUSTDO and iDO primarily in its use of

clobber logging, which restarts the entire transaction from the be-

ginning, instead of at an intermediate logging point. Therefore,

Clobber-NVM logging overhead is, in general, significantly lower

than both these systems, as their logged state at each logging point

is much larger than Clobber-NVM’s, and they always require more

logging points [42]. Clobber-NVM also supports volatile data usage

in transaction, which is generally not supported by these systems.

In JUSTDO, use of volatile data and cache values in registers are

forbidden during transaction execution, and iDO does not allow

volatile heap usage during a failure atomic section while maintain-

ing the stack in NVM to reduce logging cost.

7 CONCLUSION

This paper describes Clobber-NVM, a system that recovers by re-

executing interrupted transactions. Clobber-NVM leverages com-

piler analysis to identify necessary log entries, and automatically

adds logging for selected variables Ð clobber input addresses and

non-local volatile variables Ð at compile time. At recovery, inter-

rupted transactions roll back to the prior-execution state by apply-

ing the clobber_log and v_log, then roll forward to a consistent

after-execution state. Compared with existing NVM user-level li-

braries, Clobber-NVM simplifies the logging system and reduces

runtime overhead. Our evaluation shows that Clobber-NVM signif-

icantly improves performance compared to state-of-the-art failure-

atomic libraries.

356

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yi Xu, Joseph Izraelevitz, and Steven Swanson

ACKNOWLEDGMENTS

This work was supported in part by CRISP, one of six centers

in JUMP, a Semiconductor Research Corporation (SRC) program

sponsored by DARPA. We would like to thank our shepherd Milind

Kulkarni and the anonymous reviewers for their insightful feedback.

We are also thankful to Intel Corporation for hardware access.

A ARTIFACT APPENDIX

A.1 Abstract

This artifact description provides information to build Clobber-

NVM and run its evaluations. It includes four data structures and

three applications, as evaluated in Section 5. In this appendix, we

first describe the the hardware/software requirements for building

and running the experiments. Next, we introduce the datasets used

in evaluating Clobber-NVM, and then outline the necessary steps

to run the experiments from Section 5. Finally, we explain how to

read the evaluation results. Note that the artifacts do not depend

on NVMM to enable functional reproduction. However, our evalua-

tions were performed on the specific hardware detailed in Section

5.1. We expect other hardware may introduce different results.

A.2 Artifact Check-List (Meta-information)

• Algorithm: Clobber log and v_log.

• Program: Clobber-NVM’s library (compiler and runtimes),

four data structures (Clobber-NVM, PMDK,Atlas andMnemosyne

versions), Memcached v-1.2.5 (Clobber-NVM and PMDK

versions), Memcached v-1.2.4 (Mnemosyne version), vaca-

tion (Clobber-NVM, PMDK and Mnemosyne versions), yada

(Clobber-NVM and PMDK versions).

• Compilation: GNU C/C++ and LLVM Clang compilers.

• Data set: Traces from YCSB, Mnemosyne and STAMP.

• Runtime environment: See Section 5.1 for details.

• Hardware: The evaluation results can be reproduced by

running the experiments on a machine equipped with at

least 24 physical cores per socket and 32 GB of memory to

run all experiments.

• Execution: See A.4 and A.5 for details.

• Metrics: Performance of data structures, Memcached, va-

cation and yada. Performance breakdown of data structures.

• Output: Performance of data structures, Memcached, vaca-

tion and yada. Performance breakdown of data structures.

• How much time is needed to prepare workflow (ap-

proximately)?: The experiments are ready to run in about

40 minutes.

• How much time is needed to complete experiments

(approximately)?: About 6 hours to run all the experi-

ments.

• Publicly available?: Code, datasets, tools, and benchmarks

are publicly available.

• Archived (provide DOI)?: 10.5281/zenodo.4322233

A.3 Description

A.3.1 How to Access. The artifacts are publicly available through

Zenodo archival repository. You can access the code by using its

DOI.

A.3.2 Hardware Dependencies. We have evaluated Clobber-NVM’s

performance using the testbed from Section 5.1. The evaluations,

however, only require 24 physical cores per socket and 32 GB of

NVMM. In absence of access to real NVMM (e.g., Intel Optane

DC), you need to reserve 32 GB of memory to emulate NVMM (see

https://pmem.io/2016/02/22/pm-emulation.html for instructions).

A.3.3 Software Dependencies. We have evaluated Clobber-NVM

on Ubuntu 18.04, with GNU 7.3.1, and LLVM 7.0.0. Run ./deps.sh

to install main dependencies. You may need root permission to in-

stall some libraries. Run sudo mnemosyne-gcc/usermode/library

/pmalloc/include/alps/install-dep to install Mnemosyne de-

pendencies. You can also install them manually.

• PMDK and its dependencies: autoconf, pkg-config, libndctl-

dev, libdaxctl-dev, libjemalloc-dev

• Atlas and its dependencies: LLVM clang-3.9, ruby, libboost-

graph-dev

• Mnemosyne and its dependency: scons

• Memcached and its dependencies: libevent-dev, memslap

driver

• jemalloc, autogen, numactl, libconfig-dev, libelf-dev.

• CMake, build-essential, uuid-dev, libz-dev

A.3.4 Data Sets. Clobber-NVM’s performance tests use traces

from YCSB (workload: Load) to measure throughput of benchmark

data structures. It uses the publicly available memslap as the client

to generate a stream of Memcached requests. It also uses the work-

loads from STAMP suites. The vacation benchmark generates its

input datasets randomly. The yada benchmark uses a sample input.

The data sets are either publicly available or can be generated by

publicly available code. They are all included in the artifact.

A.4 Installation

Clobber-NVM is a joint compiler/runtime library. It uses make for

the compilation of both the compiler and runtime components.

Use the build script build.sh to build the compiler component of

Clobber-NVM using the GNU C/C++ compiler, and the runtime/li-

brary component of Clobber-NVM using LLVM Clang compiler.

You will need root permission at this step. Check the build.sh

script for instructions on building a specific component.

$ cd Clobber-NVM

$./build.sh

Also, make sure to have a NVMMfile-systemmounted at /mnt/ram.

A.5 Experiment Workflow

There are two ways to run experiments. You can choose to run

the experiments altogether by running the script ./run_all.sh,

or customize and run individual experiments, as suggested in the

README files. There are separate scripts to run benchmarks in each

category.

A.5.1 Running Experiments Altogether. Run the following com-

mands run the experiments of Clobber-NVM altogether.

$ cd Clobber-NVM

$./run_all.sh

The script dumps the evaluation results in Clobber-NVM/fig*.csv.

357

Clobber-NVM: Log Less, Re-execute More ASPLOS ’21, April 19–23, 2021, Virtual, USA

A.5.2 Running Individual Experiments. You can also configure and

run experiments individually, following the instructions in the

Clobber-NVM/README.md and README files under specific directo-

ries in the source repository.

A.6 Evaluation and Expected Result

Once you’ve ran the experiments as suggested above, you can

compare the outcome with the expected results. The key results,

as shown in Section 5, is obtained on the machine with the spe-

cific hardware configurations. Our experiments should be able to

successfully run benchmarks on machines without real NVMM

equipped. But the performance numbers collected on suchmachines

are expected to be different, given different underlying hardware.

Both PMDK and Clobber-NVM included are compatible with newer

PMDK versions. But the performance number are also expected to

change, given potentially different memory allocation and undo

log implementations.

The results are either reported in the Clobber-NVM/fig*.csv

files or printed to the screen. You can also check the redirected local

files for the screen output (see READMEs).

For the csv files, most numbers/parameters are self-explaining.

Check the scripts for detailed explanation if meanings of the num-

bers cannot be determined. For instance, below is the output for run-

ning skiplist with Clobber-NVM (Figure 6, reported in Clobber-NVM

/fig6.csv), where the data size is 256 bytes, the thread count is 1

thread and the average throughput across 5 runs is 181 Kops/sec.

clobber, skiplist, 1, 0, 256, 183226

clobber, skiplist, 1, 2, 256, 178963

clobber, skiplist, 1, 3, 256, 179784

clobber, skiplist, 1, 4, 256, 182346

clobber, skiplist, 1, 5, 256, 180285

For the results printed to the screen, most of their parameters

are also printed. For example, below is the output for running Yada

with Clobber-NVM (Figure 12). The angle constraint is 15 degree,

and the completion time is 1.538s.

Angle constraint = 15.000000

Reading input... done.

Initial number of mesh elements = 19998

Initial number of bad elements = 2931

Starting triangulation... done.

Elapsed time = 1.538

Final mesh size = 30158

Number of elements processed = 5062

Final mesh is valid.

A.7 Experiment Customization

Refer to the documentation under the benchmark directory in the

code repository for details on configuring the benchmarks.

A.8 Notes

The documentation (i.e., README files) that accompanies the source

code contains additional information for using the code as well as

further instructions on setting up and running the benchmarks.

A.9 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-ba

dging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] Alper Ilkbahar. 2018. Intel Optane DC Persistent Memory Operating Modes

Explained. https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-
operating-modes/

[2] Mohammad Alshboul, Hussein Elnawawy, Reem Elkhouly, Keiji Kimura, James
Tuck, and Yan Solihin. 2019. Efficient Checkpointing with Recompute Scheme
for Non-Volatile Main Memory. ACM Trans. Archit. Code Optim. 16, 2, Article 18
(May 2019), 27 pages. https://doi.org/10.1145/3323091

[3] Miao Cai, Chance C Coats, and Jian Huang. 2020. HOOP: Efficient Hardware-
Assisted Out-of-Place Update for Non-Volatile Memory. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 584ś596.

[4] Daniel Castro, Paolo Romano, and João Barreto. 2018. Hardware Transactional
Memory Meets Memory Persistency. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 368ś377.

[5] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-Volatile Memory Consistency. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14). Association
for Computing Machinery, New York, NY, USA, 433ś452. https://doi.org/10.114
5/2660193.2660224

[6] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile MainMemory.
Proc. VLDB Endow. 8, 7 (Feb. 2015), 786ś797. https://doi.org/10.14778/2752939.2
752947

[7] Sui Chen, Faen Zhang, Lei Liu, and Lu Peng. 2019. Efficient GPU NVRAM persis-
tence with helper warps. In 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1ś6.

[8] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and K. Olukotun. 2008. STAMP:
Stanford Transactional Applications for Multi-Processing. In 2008 IEEE Interna-
tional Symposium on Workload Characterization. 35ś46.

[9] Dave Chinner. 2015. xfs: updates for 4.2-rc1. http://oss.sgi.com/archives/xfs/2015-
06/msg00478.html.

[10] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with next-Generation, Non-Volatile Memories. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (Newport Beach, California, USA) (ASPLOS
XVI). Association for Computing Machinery, New York, NY, USA, 105ś118. https:
//doi.org/10.1145/1950365.1950380

[11] Nachshon Cohen, David T. Aksun, Hillel Avni, and James R. Larus. 2019. Fine-
Grain Checkpointing with In-Cache-Line Logging. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 441ś454. https://doi.org/10.114
5/3297858.3304046

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA) (SoCC
’10). ACM, New York, NY, USA, 143ś154. https://doi.org/10.1145/1807128.1807152

[13] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus: Efficient
Algorithms for Persistent Transactional Memory. In Proceedings of the 30th ACM
Symposium on Parallelism in Algorithms and Architectures (Vienna, Austria) (SPAA
’18). Association for Computing Machinery, New York, NY, USA, 271ś282. https:
//doi.org/10.1145/3210377.3210392

[14] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and Vijay Nagarajan. 2020.
Lazy Release Persistency. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 1173ś1186. https://doi.org/10.1145/3373376.3378481

[15] Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. 2012. Static
Analysis and Compiler Design for Idempotent Processing. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Beijing, China) (PLDI ’12). Association for Computing Machinery, New
York, NY, USA, 475ś486. https://doi.org/10.1145/2254064.2254120

[16] David Dice, Virendra J. Marathe, and Nir Shavit. 2015. Lock Cohorting: A General
Technique for Designing NUMA Locks. ACM Trans. Parallel Comput. 1, 2, Article
13 (Feb. 2015), 42 pages. https://doi.org/10.1145/2686884

[17] The LLVM Foundation. 2019. Clang: A C Language Family Frontend for LLVM.
https://clang.llvm.org/

[18] The LLVM Foundation. 2019. LLVM: Basic Alias Analysis. https://llvm.org/doc
s/Passes.html#basic-aa-basic-alias-analysis-stateless-aa-impl

358

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
https://doi.org/10.1145/3323091
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.14778/2752939.2752947
http://oss.sgi.com/archives/xfs/2015-06/msg00478.html
http://oss.sgi.com/archives/xfs/2015-06/msg00478.html
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/3297858.3304046
https://doi.org/10.1145/3297858.3304046
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3373376.3378481
https://doi.org/10.1145/2254064.2254120
https://doi.org/10.1145/2686884
https://clang.llvm.org/
https://llvm.org/docs/Passes.html#basic-aa-basic-alias-analysis-stateless-aa-impl
https://llvm.org/docs/Passes.html#basic-aa-basic-alias-analysis-stateless-aa-impl

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yi Xu, Joseph Izraelevitz, and Steven Swanson

[19] The LLVM Foundation. 2019. LLVM Language Reference Manual. https:
//llvm.org/docs/LangRef.html

[20] The LLVM Foundation. 2019. LLVM’s Analysis and Transform Passes. https:
//llvm.org/docs/Passes.html#memcpyopt-memcpy-optimization

[21] The LLVM Foundation. 2019. The LLVM Compiler Infrastructure. https:
//llvm.org/

[22] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A
Persistent Lock-Free Queue for Non-Volatile Memory. In Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Vienna, Austria) (PPoPP ’18). Association for Computing Machinery, New York,
NY, USA, 28ś40. https://doi.org/10.1145/3178487.3178490

[23] Ellis R Giles, Kshitij Doshi, and Peter Varman. 2015. SoftWrAP: A lightweight
framework for transactional support of storage class memory. In 2015 31st Sym-
posium on Mass Storage Systems and Technologies (MSST). IEEE, 1ś14.

[24] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M Chen, Satish
Narayanasamy, and Thomas F Wenisch. 2020. Relaxed Persist Ordering Us-
ing Strand Persistency. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 652ś665.

[25] Jim Gray and Andreas Reuter. 1992. Transaction processing: concepts and tech-
niques. Elsevier.

[26] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing
Guan, and Haibo Chen. 2019. Pisces: A Scalable and Efficient Persistent Transac-
tional Memory. In Proceedings of the 2019 USENIX Conference on Usenix Annual
Technical Conference (Renton, WA, USA) (USENIX ATC ’19). USENIX Association,
USA, 913ś928.

[27] Theo Haerder and Andreas Reuter. 1983. Principles of transaction-oriented
database recovery. ACM computing surveys (CSUR) 15, 4 (1983), 287ś317.

[28] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally
Ordered Durable Datastructures for Persistent Memory. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 775ś788. https:
//doi.org/10.1145/3373376.3378472

[29] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. 2017. NVthreads: Practical Persistence for Multi-Threaded Appli-
cations. In Proceedings of the Twelfth European Conference on Computer Systems
(Belgrade, Serbia) (EuroSys ’17). Association for Computing Machinery, New York,
NY, USA, 468ś482. https://doi.org/10.1145/3064176.3064204

[30] Intel Corporation. 2017. Pmdk issues: introduce hybrid transactions. https:
//github.com/pmem/pmdk/pull/2716

[31] Intel Corporation. 2019. Examples for libpmemobj: A Transactional HashMap. ht
tps://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/hashmap

[32] Intel Corporation. 2019. Intel Optane DC Persistent Memory. https:
//www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-
persistent-memory.html

[33] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York,
NY, USA, 427ś442. https://doi.org/10.1145/2872362.2872410

[34] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.
2016. High-Performance Transactions for Persistent Memories. In Proceed-
ings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (Atlanta, Georgia, USA) (ASP-
LOS ’16). Association for Computing Machinery, New York, NY, USA, 399ś411.
https://doi.org/10.1145/2872362.2872381

[35] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Delegated Persist Ordering. In
The 49th Annual IEEE/ACM International Symposium on Microarchitecture (Taipei,
Taiwan) (MICRO-49). IEEE Press, Article 58, 13 pages.

[36] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,
ChangwooMin, and Sudarsun Kannan. 2020. Durable Transactional Memory Can
Scale with Timestone. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 335ś349. https://doi.org/10.1145/3373376.3378483

[37] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Run-
time Optimization (Palo Alto, California) (CGO ’04). IEEE Computer Society,
Washington, DC, USA, 75ś. http://dl.acm.org/citation.cfm?id=977395.977673

[38] libMemcached.org. 2009. libMemcached. http://www.libMemcached.org
[39] Zhen Lin, Mohammad Alshboul, Yan Solihin, and Huiyang Zhou. 2019. Exploring

memory persistency models for gpus. In 2019 28th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 311ś323.

[40] Linux Kernel Organization. 2020. Direct Access for Files. https://www.kernel.o
rg/doc/Documentation/filesystems/dax.txt

[41] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable Transactions with De-
coupling for Persistent Memory. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Machinery, New
York, NY, USA, 329ś343. https://doi.org/10.1145/3037697.3037714

[42] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh, and
Changhee Jung. 2018. iDO: Compiler-directed failure atomicity for nonvolatile
memory. In 2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 258ś270.

[43] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ram-
natthan Alagappan, Karin Strauss, and Steven Swanson. 2017. Atomic In-Place
Updates for Non-Volatile Main Memories with Kamino-Tx. In Proceedings of
the Twelfth European Conference on Computer Systems (Belgrade, Serbia) (Eu-
roSys ’17). Association for Computing Machinery, New York, NY, USA, 499ś512.
https://doi.org/10.1145/3064176.3064215

[44] memcached 2009. Memcached. http://memcached.org/.
[45] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and

Kimberly Keeton. 2017. An Analysis of Persistent Memory Use withWHISPER. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17).
ACM, New York, NY, USA, 135ś148. https://doi.org/10.1145/3037697.3037730

[46] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use withWHISPER. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17).
Association for Computing Machinery, New York, NY, USA, 135ś148. https:
//doi.org/10.1145/3037697.3037730

[47] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B Morrey III, Dhruva R
Chakrabarti, and Michael L Scott. 2017. Dalí: A periodically persistent hash map.
In 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[48] pmem.io. 2017. Persistent Memory Development Kit. http://pmem.io/pmdk.
[49] Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Seri-

alizability in a Heterogeneous Environment of Multiple Autonomous Resource
Mangers Using Atomic Commitment. In Proceedings of the 18th International
Conference on Very Large Data Bases (VLDB ’92). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 292ś312.

[50] J. Ruppert. 1995. A Delaunay Refinement Algorithm for Quality 2-Dimensional
Mesh Generation. Journal of Algorithms (1995).

[51] Steve Scargall. 2020. Concurrency and Persistent Memory. Apress, Berkeley, CA,
277ś294. https://doi.org/10.1007/978-1-4842-4932-1_14

[52] Steve Scargall. 2020. PMDK Internals: Important Algorithms and Data Structures.
Apress, Berkeley, CA, 313ś331. https://doi.org/10.1007/978-1-4842-4932-1_16

[53] Seunghee Shin, James Tuck, and Yan Solihin. 2017. Hiding the Long Latency of
Persist Barriers Using Speculative Execution. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA
’17). Association for Computing Machinery, New York, NY, USA, 175ś186. https:
//doi.org/10.1145/3079856.3080240

[54] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (San Jose, California) (FAST’11). USENIX Association, USA,
5.

[55] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Newport Beach, California, USA) (ASPLOS XVI). Association for Computing
Machinery, New York, NY, USA, 91ś104. https://doi.org/10.1145/1950365.1950379

[56] Gerhard Weikum and Gottfried Vossen. 2001. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[57] Matthew Wilcox. 2014. Add Support for NV-DIMMs to Ext4. https://lwn.net/Ar
ticles/613384/.

[58] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Luján. 2020.
PMThreads: Persistent Memory Threads Harnessing Versioned Shadow Copies.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Computing
Machinery, New York, NY, USA, 623ś637. https://doi.org/10.1145/3385412.3386
000

[59] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference on File
and Storage Technologies (FAST 16). USENIXAssociation, Santa Clara, CA, 323ś338.
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

[60] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-Based Single
Level Systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (Santa Clara, CA) (FAST’15). USENIX Association, USA, 167ś181.

359

https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/Passes.html#memcpyopt-memcpy-optimization
https://llvm.org/docs/Passes.html#memcpyopt-memcpy-optimization
https://llvm.org/
https://llvm.org/
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3373376.3378472
https://doi.org/10.1145/3373376.3378472
https://doi.org/10.1145/3064176.3064204
https://github.com/pmem/pmdk/pull/2716
https://github.com/pmem/pmdk/pull/2716
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/hashmap
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/hashmap
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://doi.org/10.1145/2872362.2872410
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1145/3373376.3378483
http://dl.acm.org/citation.cfm?id=977395.977673
http://www.libMemcached.org
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://doi.org/10.1145/3037697.3037714
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/3037697.3037730
https://doi.org/10.1145/3037697.3037730
https://doi.org/10.1145/3037697.3037730
http://pmem.io/pmdk
https://doi.org/10.1007/978-1-4842-4932-1_14
https://doi.org/10.1007/978-1-4842-4932-1_16
https://doi.org/10.1145/3079856.3080240
https://doi.org/10.1145/3079856.3080240
https://doi.org/10.1145/1950365.1950379
https://lwn.net/Articles/613384/
https://lwn.net/Articles/613384/
https://doi.org/10.1145/3385412.3386000
https://doi.org/10.1145/3385412.3386000
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

	Abstract
	1 Introduction
	2 Background
	2.1 Machine Model
	2.2 Programming Model
	2.3 Program Analysis Definitions

	3 Clobber Logging Design
	3.1 Undo-Then-Reexecute
	3.2 Improving Performance
	3.3 Clobber Logging

	4 Clobber-NVM Implementation
	4.1 Using Clobber-NVM
	4.2 Runtime and Callbacks
	4.3 Recovery
	4.4 Compiler

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Data Structure Benchmarks
	5.3 Performance Breakdown
	5.4 Comparison to iDO
	5.5 Recovery Overhead
	5.6 Memcached
	5.7 Vacation
	5.8 Yada
	5.9 Optimization Effectiveness
	5.10 Compile Time Overhead

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization
	A.8 Notes
	A.9 Methodology

	References

