
CXL Shared Memory Programming:
Barely Distributed and Almost Persistent
Yi Xu

UC Berkeley
Suyash Mahar
UC San Diego

Ziheng Liu
UC San Diego

Mingyao Shen
UC San Diego

Steven Swanson
UC San Diego

Abstract
While Compute Express Link (CXL) enables support for
cache-coherent shared memory among multiple nodes, it
also introduces new types of failures—processes can fail be-
fore data does, or data might fail before a process does. The
lack of a failure model for CXL-based shared memory makes
it challenging to understand and mitigate these failures.
To solve these challenges, in this paper, we describe a

model categorizing and handling the CXL-based sharedmem-
ory’s failures: data and process failures. Data failures in CXL-
based shared memory render data inaccessible or inconsis-
tent for a currently running application. We argue that such
failures are unlike data failures in distributed storage sys-
tems and require CXL-specific handling. To address this, we
look into traditional data-failure mitigation techniques like
erasure coding and replication and propose new solutions
to better handle data failures in CXL-based shared memory
systems. Next, we look into process failures and compare the
failures and potential solutions with PMEM’s failure model
and programming solutions. We argue that although PMEM
shares some of CXL’s characteristics, it does not fully ad-
dress CXL’s volatile nature and low access latencies. Finally,
taking inspiration from PMEM programming solutions, we
propose techniques to handle these new failures.

Thus, this paper is the first work to define the CXL-based
shared memory failure model and propose tailored solutions
that address challenges specific to CXL-based systems.

1 Introduction
In the last few years, Compute Express Link (CXL) [1] has
emerged as a promising solution in datacenters for low-
latency interconnect. CXL includes several new features like
support for cache-coherent accesses, low-latency communi-
cation, and shared memory among multiple hosts and de-
vices. One of the exciting new system architectures enabled
by CXL is the ability to share memory among multiple hosts
in a cache-coherent manner. CXL’s memory sharing enables
CXL-connected hosts to share and access a memory region
while the hardware handles the coherency.

However, applications today are not designed to exploit
this multi-host, cache-coherent shared memory. Current ap-
plications are typically either tailored for single-machine
execution (e.g., microservices), where the applications are
stateless and access globally shared data using well-defined
APIs, or distributed in nature (e.g., databases) and use fault
tolerance to maintain data availability and consistency.

To address these challenges, we categorize and define the
CXL-based shared memory’s failure model where data and
processes can fail independently:

(1) Data Failures in CXL Systems. Data failures occur
when CXL memory becomes unavailable to other com-
pute nodes. We argue that while data failures resemble
failures in high-availability distributed systems, CXL-
based shared memory has new, unique challenges.

(2) Process Failures in CXL Systems. Process failures oc-
cur when a process accessing CXL memory fails, but the
data remains accessible. We argue that in a CXL system, if
a process fails in the middle of an update to CXL-attached
shared memory, it can result in inconsistent data.

We use this failure model to propose mechanisms to han-
dle data and process failures. Though data failures in CXL-
based multi-host data stores resemble distributed storage
systems in how they enable storing and sharing of data, they
differ dramatically in handling failures and redundancy. As
we will discuss in Section 3.1, techniques like erasure cod-
ing and replication have limitations for CXL systems. For
example, unlike traditional networked storage systems, CXL
systems use load/store which introduce additional CPU
overhead for replication compared to offloading these opera-
tions to the NIC’s DMA engine. To address this, we propose
a CXL switch-based replication mechanism.
Further, while process failures in CXL resemble the per-

sistent memory (PMEM) failure model in certain aspects,
PMEM’s solutions are not sufficient due to the differences
in PMEM and CXL’s failure models, performance, and per-
sistence guarantees (Section 3.2). For example, using PMEM

1

ar
X

iv
:2

40
5.

19
62

6v
2

 [
cs

.D
C

]
 1

7
Ju

l 2
02

4

Y. Xu et al.

Application
Cache

CXL CXL

DRAM

Application
Cache
DRAM

Failure Domain #0 Failure Domain #1 Failure Domain #2

Figure 1: CXL’s Failure Model. Three failure scenarios
based on the application’s location and data. (1) Do-
main #0 with data: data failure. (2) Domain #1 with
execution context: process failure. (3) Domain #2 with
data and execution context: data and process failure.

techniques like undo- or redo-logging while address data-
consistency challenges, they add significant additional over-
head with no persistency guarantees. To address the chal-
lenges of achieving data-consistency in the face of failures,
we propose using whole-system persistence with minimal
modifications to avoid the high overhead of logging.

Next in Section 3.3, in addition to independently address-
ing process and data failures, we also propose specific tech-
niques to mitigate them together to simplify the implemen-
tation and improve their efficiency. This is because process-
failure mitigation techniques like logging and checkpointing
maintain multiple copies of application data which could
help lower the overhead of data-failuremitigation techniques.
Finally in Section 3.4, we propose and discuss the added ad-
vantages of mitigating data and process failures for process
migration and improved data access bandwidth.

2 Failure Model
In this section, we describe the failure model of CXL-based
shared memory systems.

A CXL-based system introduces unique independent fail-
ures in nodes that contain only data or only processing logic,
because it enables physical separation of data and processing
logic across nodes. CXL enables practical memory disaggre-
gation by allowing compute resources to use load/store
instructions to access memory on other devices. Thus, in a
CXL-based disaggregated memory system, most memory is
decoupled from compute resources [2].
We describe the CXL failure model by dividing the sys-

tem into multiple failure domains, each consists of devices
susceptible to simultaneous failures from a mutual source.
As Figure 1 shows, as application and data may or may

not reside in the same failure domain, the CXL failure model
has three scenarios: data failure (domain #0), process failure
(domain #1), and both data and process failure (domain #2).

Data failure occurs when a node that contains data fails,
rendering the data inaccessible to all CXL-connected pro-
cessing devices. Further, data failure may also make data
inconsistent, crucial for systems using CXL to communicate
and share data with other connected hosts [3, 4]. If a CXL
system stores data on several devices that are in different

Application
Cache
DRAM

Failure Domain #0

(a) Single

Network
Application
Cache
DRAM

Failure Domain #1

Application
Cache
DRAM

Failure Domain #0

(b) Distributed System
Figure 2: Failure Models of Traditional Systems.

failure domains, the likelihood of one of the devices failing in-
creases with the number of devices. Without fault tolerance
mechanisms, applications utilizing CXL memory could ex-
perience significantly higher failure rates compared to those
using only local memory. Thus, a practical CXL memory
system must provide a scalable and efficient fault tolerance
mechanism in the event of unexpected data failures.

Process failure occurs when a node containing process-
ing logic fails. When a process fails, it might be in the midst
of updating remote memory, leaving the data inconsistent.
The CXL hardware ensures atomicity at the cache line granu-
larity [3, 5], but applications may define atomicity differently
based on specific operation semantics. In the event of a fail-
ure, remote updates may remain partially completed, leading
to potential inconsistencies in the data.
This failure model is different from those of most tradi-

tional systems. As depicted in Figure 2a, a single-machine
system only has one failure domain, where the data and pro-
cessing logic fail together. Though distributed systems have
multiple nodes that can fail independently—the data and pro-
cessing logic usually coexist on the same node. Thus, a failure
still crashes both data and processing logic concurrently in
typical distributed systems, as shown in Figure 2b.

Thus, CXL-based shared memory complicates failures and
current mechanisms for managing failures in distributed
systems do not align well with CXL. Existing mechanisms
might not address both the data and process failures, could
result in data inconsistency, or may overlook the potential to
salvage data that is still consistent. Furthermore, CXL’s high
bandwidth and low latency nature presents new possibilities
for rapid recovery and more efficient fault tolerance.

3 Handling Failures in CXL-based System
In this section, we describe mechanisms to handle different
types of failures.We demonstrate their infrastructure, discuss
how they can be co-designed for data and process failures,
and highlight some benefits that come with them.

3.1 Data Failure
Data failures in CXL-based systems could be managed sim-
ilarly to how they are handled in distributed systems, but
with adaptations to solve challenges introduced by CXL.

One of the most common ways of ensuring data avail-
ability in distributed systems is replication [6–10], where
multiple copies of data are stored across nodes.

2

CXL Shared Memory Programming:
Barely Distributed and Almost Persistent

Besides known drawbacks of replication such as high stor-
age overhead, new challenges arise within CXL environ-
ments. As hosts access data in CXL-attached memory devices
using load and store instructions, the large amount of data
transmission of replication requires active CPU usage, unlike
in distributed systems where operations can be dispatched
and queued in the NIC.

Replication in memory-based systems is also challenging
because systems expect memory to have low latency. Tomeet
this expectation, we propose embedding replication function-
ality in the CXL network by augmenting CXL switches [11]
to replicate store and steer load to balance memory traffic.
A compute node issues stores to a CXL switch as it would to
a shared memory node and the switch would replicate the
stores across memory devices in multiple failure domains.
To ensure even greater redundancy, the compute node could
be configured to issue stores to multiple redundant CXL
switches similar to high-availability storage systems [12]. In
this way, the CPU can dispatch load/store operations to
the switch and avoid the extra CPU usage introduced.
Another widely used method is erasure coding, which

involves breaking data into shards and generating parity
shards [13] that can be used to reconstruct the original data
shards. Compared to replication, erasure coding consumes
less storage space but requires the data to be managed in
fixed-size blocks. Although data in CXL is transmitted at
256 B granularity (the FLIT size) [14], applications allocate
memory objects of different sizes. Thus, write operations
using erasure coding would amplify the transmission from
FLIT/object size to the whole block in order to compute
the new parity block. Many memory-based erasure coding
mechanisms solve this problem to some extent by organizing
multiple objects into fixed-size groups, and then generating
parity data for each group [15, 16]. These grouping strategies
developed for far-memory systems can be extended to CXL-
based memory systems, offering a potential solution.
However, erasure coding with grouping strategies may

still need further improvements for CXL systems, because
it not only requires additional programming efforts and has
performance overheads, but also adds computational over-
head and is on the critical path. Due to the low access latency
of CXL memory, the computational overhead now may con-
stitute a significant portion of the overall overhead.

3.2 Process Failure
We propose different process failure handling methods de-
pending on the application characteristics. They address data
inconsistency after process failures, a significant concern in
CXL-based shared memory systems for rapid process failure
recovery [17]. This concern is also faced by PMEM systems,
so we take inspiration from PMEM techniques.

However, directly applying PMEM techniques is not ef-
ficient, because CXL systems have different architectures
and performance characteristics, unveiling different trade-
offs, new challenges and new opportunities. Therefore, we
re-examine and adapt PMEM techniques for CXL.
3.2.1 Background of Data Consistency. The notion of failure
atomicity is centered around preserving data consistency
after failures in both CXL and PMEM systems. It guarantees
that a single operation or all operations in a transaction are
either entirely applied or not applied at all, thereby prevent-
ing data inconsistencies after failures.

In most PMEM systems, a critical aspect of ensuring data
consistency is maintaining write ordering: writes need to be
persisted in the correct sequence. Therefore, these systems
often integrate mechanisms to maintain an additional copy
of consistent data, such as journaling, checkpoints, and trans-
action logs, often leading to write-amplification. Following
unexpected failures, they will restore the data to a known
and consistent state, either by rolling back or completing the
partial updates. However, write ordering and write amplifi-
cation lead to significant performance overhead in PMEM
systems. Additionally, the need to identify transactions in
every program demands substantial programming effort.
3.2.2 Application-dependent Methods. For systems designed
to execute programs that are open to program analysis
and modification, and run workloads with known data ac-
cess patterns, we propose using logging mechanisms. Typi-
cally, applications can use three types of logs: undo [18–22],
redo [22, 23], and resumption logs [18, 24, 25].

Unlike PMEM where the storage media is inherently slow,
the performance of logging in CXL systems depends on the
location of log entries, which is different between log tech-
niques. This shifts the balance of trade-offs between the three
types of logs compared to PMEM.

Read-heavy applications should choose undo log. In
CXL systems, the undo log must be located within a failure
domain outside of the process node. Before each in-place
update, the application must log the old value and ensure the
log entry has arrived at the intended failure domain. Thus,
undo log entries cannot be cached on the process node’s CPU
caches, which may have a substantial performance impact on
write-heavy workloads. If the programs have data dependency
inside transactions and are open to analysis, the amount of
logging can be further optimized by resumption logs.
Write-heavy applications should choose redo log.

Redo log applications directly update log entries and only
need to ensure entries have arrived in a different failure
domain by the end of transaction. Then they can use logs to
update the application data and commit the transaction. So
there is no constraint preventing a log entry from being in the
same failure domain until the end of transaction. Therefore,

3

Y. Xu et al.

writes with redo logs are efficient since hot data can be cached
locally, but reads may be slower because each read needs to
check the updates in logs and might require redirection.

3.2.3 Application-independent Methods. For systems de-
signed to execute programs that may not be open to analysis
and modification, with unclear data access patterns, we de-
scribe the checkpoint mechanism adapted from PMEM sys-
tems [26, 27], and advocate for a method inspired by whole
system persistence techniques [28, 29].

The CXL system could identify execution points at which
data is consistent across threads and duplicate the data as
checkpoints to a different failure domain. Updates to check-
points must also be atomic. Performance optimization can be
achieved through incremental [30, 31] or partial checkpoints.
Unlike logging mechanisms that need to log most store
operations, the frequency of checkpoints can be adjusted to
achieve lower overhead. However, this method may double
memory usage and, due to thread synchronization and high
data volumes at checkpoints, can significantly increase tail
latency.
Thus, we advocate a whole process persistence mecha-

nism, which makes processes seamlessly continue execution
as if the failure never occurred. Whole process persistence
persists only the cache and registers. There can be two im-
plementations. The hardware one requires a small backup
power supply, and migrates the cache and register files to
another failure domain when a process fails, which has no
performance cost before failure. The software one maintains
a reasonably up-to-date copy of the cache and registers in a
different failure domain, with performance cost depending
on the copy interval.
This approach allows more cost-effective recovery for

CXL systems, with significantly smaller memory consump-
tion compared to checkpoints. Compared to ordered cache
eviction, persisting cache and registers in an unordered man-
ner is simpler and faster. It ensures IO consistency with the
external world across failures: if an IO operation has been ini-
tiated, it cannot be undone or redone, as the system lacks the
knowledge of whether it has been issued, along with its sta-
tus and visibility to the external world. Moreover, it provides
building blocks to make failures transparent to users.
3.2.4 Key Insights. We share three insights about the meta-
data (e.g., the log, checkpoint, and cache and register dump)
transferred by these methods.
The system should choose the metadata location by its

design goal. If designed for high availability of data, the meta-
data must be stored across failure domains by mechanisms
in Section 3.1. If designed for rapid recovery of processes,
the metadata can be placed in the data node, offering better
performance and less memory consumption. After one pro-
cessing node fails, the metadata would rapidly restore the

inconsistent data and other processing nodes can resume.
Designers should choose and tweak methods based on the

metadata transfer cost, which may consider bandwidth, la-
tency and data transmission fee. For high transfer cost, they
should find logging more efficient, and reduce the frequency
of checkpoints and cache and register dumps. For low trans-
fer cost, write amplification and programming complexity
become more important, making logging less appealing.

Last, systems capable of handling data failures inherently
gain some resilience to process failures. This insight enables
co-design to effectively mitigate the overall performance
overhead, which we will expand in Section 3.3.

3.3 Handling Process and Data Failure
Together

In this section, we study how process and data failure han-
dling interact with each other. Then we will look at several
techniques for applications to integrate them together. We
analyze the performance of each mechanism and compare it
with the baseline version that do NOT handle data or process
failures. We define 𝑅 as the number of replicas (or the mem-
ory overhead of erasure coding). Assuming data nodes share
bandwidth through a CXL switch with the process node,
replication reduces throughput by 1

𝑅
. Direct connections

with separate bandwidths might not affect throughput. This
section uses the switch-based shared bandwidth assumption.
3.3.1 Layered Process and Data Failure Handling

Replication/Erasure Coding with Undo Logging. In scenar-
ios involving writing to replicas or implementing erasure
coding, rather than directly modifying values, applications
can employ logging techniques like undo logging. During
the recovery of data, the replica or parity shard will be rolled
back based on the log. Because logging doubles each write
and imposes memory ordering, this mechanism results in 2×
latency and 1

2𝑅 × throughput.

Replication/Erasure Coding with Atomic Pointer Updates.
Alternatively, an application can update a copy of a data
structure, and atomically update any pointers to point to
this new copy. Depending on the data structure implemen-
tation and the update pattern, this mechanism may result
in 1 to 𝑛× latency, and 1

𝑛𝑅
to 1

𝑅
× throughput. Performance

may decrease when frequently updating small fields of ob-
jects, requiring entire object copies for minor changes. This
approach also demands substantial programming effort to
maintain atomic operations.

Replication/Erasure Coding with Whole Process Persistence.
If the hardware can introduce a temporary additional failure
domain (e.g., by using a battery to back up cache and reg-
isters) in the event of a process failure, we could integrate
whole process persistence with any data failure handling

4

CXL Shared Memory Programming:
Barely Distributed and Almost Persistent

mechanism. Since whole process persistence only transfers
a small amount of data (local cache and registers) across
failure domains at the moment of process failure, it incurs
no runtime overhead. This mechanism ensures 1× latency
and maintains a 1

𝑅
× throughput.

3.3.2 Co-designed Process and Data Failure Handling

Redo-compacted Replication. In redo log systems, updates
are directly applied to logs. Subsequent accesses to logged
addresses are also redirected to log entries until the log is
digested, and updates are propagated to the original data
structure. Therefore, we could reduce the updates to replicas
by redirecting all subsequent accesses to redo logs.

Background compaction processes the redo log into repli-
cas to prevent indefinite size growth and improves read per-
formance by avoiding searches through the entire log. This
process includes reading and then garbage collecting the
log entries. This mechanism leads to 1× write latency, as
updates are complete upon log entry, and the compaction is
off the critical path. Read latency exceeds 1×. Throughput
varies between 1

2𝑅× and 1
𝑅
×, influenced by update skewness;

it approaches 1
𝑅
× with frequent updates to a few addresses.

Stage-based Replication. Tomanage process failures during
replication, one can intentionally enforce replicas to apply
updates in a specific order. As long as the majority of replicas
are not currently undergoing updates, the system remains
capable of handling concurrent process and data failures. In
the event of either process or data failure, the system can
recover by rolling back or rolling forward to the states of the
replicas not undergoing updates, which can act as logs.

The majority of replicas not undergoing updates can exist
in either the before-update state or the after-update state.
The decision to roll back or forward is based on how many
replicas finished the operation, which also decides if the op-
eration is marked as completed. Replicas advance through
pre-execution, in-execution, and post-execution stages. As-
suming 2𝑛+1 replicas in total, at most n replicas can be in the
in-execution stage. Each operation is considered completed
only when the majority of replicas finish an operation. Con-
sequently, the latency may be up to 2× higher, depending
on replica setup. The throughput reduction is always 1

𝑅
×.

Log-structured Memory on Checkpoints. A simple failure
handling method is to replicate checkpoints across failure
domains. Checkpoints enable recovery from a process failure
and replicating them ensures data availability even if a failure
domain goes down. However, with traditional checkpointing,
the application would lose any new updates since the last
checkpoint.
To address this, we propose to replicate the most recent

checkpoint along with a log that records any new updates
since the last checkpoint. This log resembles the semantic

log used in PMEM programming [32]. This ensures that in
case the process and data nodes fail, the application can still
reconstruct the most up-to-date state using the checkpoint
and the semantic log. Whenever an application creates a
new checkpoint, it replicates the checkpoint across failure
domains and records the subsequent updates in a replicated
semantic log-structured memory. This method offers a la-
tency of 1×. It can achieve a 1

𝑅
× throughput if checkpoint

updates are efficiently implemented.
3.4 Additional Benefits of Handling

Failures
Failure handling usually relies on relatively up-to-date data
copies, which may provide benefits such as faster process
migration [33] and improved data-access bandwidth.

For example, a CXL-based replicated memory system can
significantly simplify migrating processes across machines in
a data center. An orchestrator can kill the process and use its
checkpoint or whole process persistence state to resume it on
another machine. While to the outside world, the application
has migrated to a new machine, to the application it seems
like there was a simple process failure.

Further, data failure handling mechanisms like data repli-
cation and erasure coding also offer improved data access
bandwidths. This is because data reads can be served from
any one of the replicas in a replicated CXL-based memory
system. Similarly, erasure-coded memory systems enable bet-
ter write throughput for large writes than a single memory
system as a single large write operation is striped as smaller
writes across multiple CXL-attached memory systems.
4 Conclusion
CXL-based shared memory systems have data and processes
in separate failure domains and fail independently of each
other. In this paper, we have categorized CXL’s failures into
data failures and process failures.

We propose mechanisms to handle data failure, inspired by
traditional distributed systems while adapted to the unique
characteristics of CXL systems. Similarly, we looked into
the data consistency challenges of process failures and how
they relate to persistent memory, and proposed solutions
that address the non-persistent nature of CXL-based shared
memory. Finally, we addressed the challenges of handling
process and data failures together, and highlighted the addi-
tional benefits of failure handling mechanisms.
References
[1] Debendra Das Sharma. Compute Express Link®: An open industry-

standard interconnect enabling heterogeneous data-centric computing.
In 2022 IEEE Symposium on High-Performance Interconnects (HOTI),
pages 5–12. IEEE, 2022.

[2] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo
Jung. Direct access, high-performance memory disaggregation with
DirectCXL. In Proceedings of the 2022 USENIX Conference on Usenix

5

Y. Xu et al.

Annual Technical Conference, pages 287–294, 2022.
[3] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning

Ding, Fan Du, Jinlei Jiang, Tao Ma, and Yongwei Wu. Partial failure
resilient memory management system for (CXL-based) distributed
shared memory. In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 658–674, 2023.

[4] Suyash Mahar, Ehsan Hajyasini, Seungjin Lee, Zifeng Zhang, Mingyao
Shen, and Steven Swanson. Telepathic Datacenters: Efficient and
high-performance RPCs using shared CXL memory. 15th Annual
Non-Volatile Memories Workshop, 2024.

[5] Adarsh Patil, Vijay Nagarajan, Nikos Nikoleris, and Nicolai Oswald.
Āpta: Fault-tolerant object-granular CXL disaggregated memory for
accelerating faas. In 2023 53rd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), pages 201–215. IEEE,
2023.

[6] Yi Xu, Henry Zhu, Prashant Pandey, Alex Conway, Rob Johnson,
Aishwarya Ganesan, and Ramnatthan Alagappan. IONIA:High-
Performance replication for modern disk-based KV stores. In 22nd
USENIX Conference on File and Storage Technologies (FAST 24), pages
225–241, 2024.

[7] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba
Shrira, andMichaelWilliams. Replication in the harp file system. ACM
SIGOPS Operating Systems Review, 25(5):226–238, 1991.

[8] Lamport Leslie et al. Paxosmade simple. ACM Sigact News, 32(4):18–25,
2001.

[9] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Exploiting nil-externality
for fast replicated storage. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages 440–456, 2021.

[10] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305–319, 2014.

[11] XConn technologies debuts industry’s 1st hybrid CXL 2.0
and PCIe Gen 5 switch. HPCwire, 8 2023. Available online:
https://www.hpcwire.com/off-the-wire/xconn-technologies-debuts-
industrys-1st-hybrid-cxl-2-0-and-pcie-gen-5-switch/ (accessed
March 17, 2023).

[12] NetApp. FlexPod architecture. NetApp, 4 2023. Available
online: https://docs.netapp.com/us-en/flexpod/healthcare/medical-
imaging_architecture.html (accessed March 17, 2023).

[13] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in
Windows Azure Storage. In Proceedings of the 2012 USENIX conference
on Annual Technical Conference (ATC’12), 2012.

[14] Debendra Das Sharma, Robert Blankenship, and Daniel S Berger. An
introduction to the Compute Express Link® (CXL) interconnect. arXiv
preprint arXiv:2306.11227, 2023.

[15] Liangfeng Cheng, Yuchong Hu, and Patrick PC Lee. Coupling decen-
tralized key-value stores with erasure coding. In Proceedings of the
ACM Symposium on Cloud Computing, pages 377–389, 2019.

[16] Yang Zhou, Hassan MG Wassel, Sihang Liu, Jiaqi Gao, James Mickens,
Minlan Yu, Chris Kennelly, Paul Turner, David E Culler, Henry M Levy,
et al. Carbink: Fault-Tolerant far memory. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages
55–71, 2022.

[17] Alexander Baumstark, Philipp Götze, Muhammad Attahir Jibril, and
Kai-Uwe Sattler. Instant graph query recovery on persistent memory.
In Proceedings of the 17th International Workshop on Data Management
on New Hardware, pages 1–4, 2021.

[18] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic
persistent memory updates via justdo logging. ACM SIGARCH Com-
puter Architecture News, 44(2):427–442, 2016.

[19] Steve Scargall and Steve Scargall. PMDK internals: Important al-
gorithms and data structures. Programming Persistent Memory: A
Comprehensive Guide for Developers, pages 313–331, 2020.

[20] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and
Pratap Subrahmanyam. go-pmem: native support for programming
persistent memory in go. In Proceedings of the 2020 USENIX Conference
on USENIX Annual Technical Conference, 2020.

[21] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
leveraging locks for non-volatile memory consistency. In Proceedings
of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, page 433–452, 2014.

[22] Suyash Mahar, Mingyao Shen, TJ Smith, Joseph Izraelevitz, and Steven
Swanson. Puddles: Application-independent recovery and location-
independent data for persistent memory. In Proceedings of the Nine-
teenth EuroSys Conference, 2024.

[23] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
lightweight persistent memory. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, page 91–104, 2011.

[24] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-nvm: log
less, re-execute more. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 346–359, 2021.

[25] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H
Noh, and Changhee Jung. ido: Compiler-directed failure atomicity
for nonvolatile memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–270. IEEE, 2018.

[26] Hussein Elnawawy, Mohammad Alshboul, James Tuck, and Yan Soli-
hin. Efficient checkpointing of loop-based codes for non-volatile main
memory. In 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 318–329. IEEE, 2017.

[27] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu. Thynvm: Enabling software-transparent crash con-
sistency in persistent memory systems. In Proceedings of the 48th
International Symposium on Microarchitecture, pages 672–685, 2015.

[28] Dushyanth Narayanan and Orion Hodson. Whole-system persistence.
In Proceedings of the seventeenth international conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 401–410, 2012.

[29] George Hodgkins, Yi Xu, Steven Swanson, and Joseph Izraelevitz.
Zhuque: Failure is not an option, it’s an exception. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23), pages 833–849, 2023.

[30] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young
ri Choi, Alan Sussman, and Beomseok Nam. Listdb: Union of write-
ahead logs and persistent skiplists for incremental checkpointing
on persistent memory. In USENIX Symposium on Operating Systems
Design and Implementation, 2022.

[31] Fangnuo Wu, Mingkai Dong, Gequan Mo, and Haibo Chen. Treesls:
A whole-system persistent microkernel with tree-structured state
checkpoint on nvm. In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 1–16, 2023.

[32] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson.
Pronto: Easy and fast persistence for volatile data structures. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
789–806, 2020.

[33] Dejan S Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler,
and Songnian Zhou. Process migration. ACM Computing Surveys
(CSUR), 32(3):241–299, 2000.

6

https://www.hpcwire.com/off-the-wire/xconn-technologies-debuts-industrys-1st-hybrid-cxl-2-0-and-pcie-gen-5-switch/
https://www.hpcwire.com/off-the-wire/xconn-technologies-debuts-industrys-1st-hybrid-cxl-2-0-and-pcie-gen-5-switch/
https://docs.netapp.com/us-en/flexpod/healthcare/medical-imaging_architecture.html
https://docs.netapp.com/us-en/flexpod/healthcare/medical-imaging_architecture.html

	Abstract
	1 Introduction
	2 Failure Model
	3 Handling Failures in CXL-based System
	3.1 Data Failure
	3.2 Process Failure
	3.3 Handling Process and Data Failure Together
	3.4 Additional Benefits of Handling Failures

	4 Conclusion
	References

