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Abstract
The rapid growth of LLMs has revolutionized natural lan-
guage processing and AI analysis, but their increasing size
and memory demands present significant challenges. A com-
mon solution is to spill over to CPU memory; however, tra-
ditional GPU-CPU memory swapping often results in higher
latency and lower throughput.
This paper introduces Pie, an LLM inference framework

that addresses these challengeswith performance-transparent
swapping and adaptive expansion. By leveraging predictable
memory access patterns and the high bandwidth of modern
hardware like the NVIDIA GH200 Grace Hopper Superchip,
Pie enables concurrent data swapping without affecting fore-
ground computation, expanding effective memory without
added latency. Adaptive expansion dynamically adjusts CPU
memory allocation based on real-time information, optimiz-
ing memory usage and performance under varying condi-
tions.

Pie maintains low computation latency, high throughput,
and high elasticity. Our experimental evaluation demon-
strates that Pie achieves optimal swapping policy during
cache warmup and effectively balances increased memory
capacity with negligible impact on computation. With its
extended capacity, Pie outperforms vLLM by up to 1.9×
in throughput and 2× in latency. Additionally, Pie can re-
duce GPU memory usage by up to 1.67× while maintain-
ing the same performance. Compared to FlexGen, an offline
profiling-based swapping solution, Pie achieves magnitudes
lower latency and 9.4× higher throughput.

1 Introduction
In recent years, the application of Large Language Models
(LLMs) has seen widespread adoption, becoming a corner-
stone of modern technology. These models are essential for
a range of applications, from natural language processing to
sophisticated AI-driven analysis. However, efficient memory
management for LLM inference remains a challenge.

LLMs are growing in size [18, 47], and so are the prompts
they process. These models typically have billions of param-
eters and work with massive datasets and key-value caches
when generating responses. The maximum allowed context
length of commercially available LLMs has been increas-
ing exponentially [2, 4, 12]. While efforts have been made
to increase GPU memory capacity, the compute capacity
continues to grow faster than the memory capacity.
When memory demands exceed GPU memory, a natural

solution is to spill over to CPU memory, solution also known
as swapping. Unfortunately, swapping can lead to higher

latency and lower throughput, as the GPU may need to wait
for data spilled over to the CPU memory to be transferred
back. While increasing the CPU memory capacity allows
us to process larger data batches, the added wait time may
results in both higher latency and lower throughput.
With LLM inference, per-token latency consists of two

parts: computation latency and queuing latency. Computa-
tion latency is the time it takes to compute the token, while
queuing latency is the time the token has to wait because
it cannot be scheduled as soon as it arrives, typically due
to the system being fully utilized. A larger GPU memory
capacity can achieve lower end-to-end latency because of
lower queuing latency, and higher throughput because of
increased processing capacity. Therefore, the optimal swap-
ping solution would be to add more memory capacity with-
out affecting per-token computation latency (i.e., without
causing the GPU to wait for data transfers). Achieving this
will result in lower end-to-end per-token latency and higher
throughput.
In this paper, we ask the following questions: "What is

the maximum CPU memory we can add without blocking
GPU computation?" and "What is the performance impact of
extending capacity using CPU memory?" We explore these
questions by designing Pie, an LLM inference framework
that based on performance-transparent swapping and adap-
tive expansion. Performance-transparent swapping ensures
that swapping has zero impact on the compute latency. Adap-
tive expansion dynamically allocates the optimal amount
of CPU memory for swapping, maintaining performance
transparency and preventing resource under-utilization.

At its core performance-transparent swapping allows for
the swapping process to occur concurrently with foreground
computation. Performance-transparent swapping gives the
application the illusion of a GPU with more memory without
any negative impact on latency. Note this is different from
virtual memory; while virtual memory also gives the illusion
of more memory, it comes at the cost of latency due to paging
when the data is not in memory. Performance-transparent
swapping improves performance by using a larger memory
without the associated latency penalties.

Therefore, by adjusting the amount of swapping, the sys-
tem can modify the effective memory size. Effective memory
is defined as the maximum amount of memory that the ap-
plication can use with no impact on the GPU performance.
It includes the total available GPU memory plus effective
extended memory, which is a certain amount of dynamically
allocated CPU memory that can be used without blocking
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GPU computation. This approach effectively increases the
memory size while introducing a degree of elasticity.
To achieve true performance transparency in swapping,

data required for upcoming accesses must be prefetched to
the compute device before those accesses occur. The prefetch
bandwidth imposes a strict constraint on the data size that
can be transferred between devices within a given time
interval. The prefetch efficiency measures the fraction of
prefetched data that turns out to be useful and can be utilized
without blocking the GPU. The effective extended memory
size is bounded by the product of the prefetch bandwidth, the
duration of the prefetch time interval, and the prefetch effi-
ciency. Therefore, the swapping mechanism relies on high-
bandwidth devices and must accurately predict upcoming
memory accesses.

There are two properties that facilitate performance trans-
parent swapping. First, recent GPUs, such as NVIDIA’s GH200
Grace Hopper Superchip [27], provide high-bandwidth inter-
connect between the GPU and CPUmemories. By leveraging
NVLink, this bandwidth can be as high as 900GB/s. Second,
thememory accesses of the LLM inference workloads are pre-
dictable, especially at the layer granularity. This predictabil-
ity allows us to achieve 100% prefetching efficiency. Together,
these two properties allow us to substantially increase the
effective memory for LLM inference, potentially extending
this memory by tens of gigabytes.

Determining the appropriate amount of CPU memory for
swapping is a non-trivial task. If the allocated size is too large,
Pie will break the transparency of swapping, causing appli-
cations to experience delays as computations are blocked
waiting for data. Conversely, if the size is too small, resources
may be underutilized, leading to lower performance. Addi-
tionally, this decision is influenced by workload characteris-
tics; some workloads do not benefit from increased memory
because they are compute-bound and require only a small
amount of memory. Adding more memory to such workloads
would be a waste of resources.

One technique to optimize the performance of LLM in-
ference is using offline profiling: we profile and decide the
memory allocations before running the application. Unfortu-
nately, offline profiling ignores changes in the workloads and
the system environment during the run time (e.g., another
process might initiate data transfer during the inference
workload).

To address this challenge, Pie employs adaptive expansion,
a lightweight online method, to determine the amount of
CPU memory for swapping. It starts with zero CPU mem-
ory and then gradually increases this memory as long as
the following conditions: (1) the GPU-CPU interconnect is
not saturated; (2) the swapping latency remains lower than
computation latency; (3) the workload throughput increases
as we allocate more CPU memory. If any of these conditions
are not met, Pie maintains the current allocation or reduces
the amount of CPU memory allocated for swapping.

This paper makes four key contributions:
• We introduce performance-transparent swapping, en-
abling LLM inference systems to use CPU memory
without blocking computation.

• We present adaptive expansion, a technique that dy-
namically adjusts the swapping size to accommodate
changes in the system environment and workload,
achieving optimal performance under varying condi-
tions.

• We design and implement a system prototype, Pie,
that achieves high throughput, low latency, and high
elasticity.

• We provide a thorough experimental evaluation show-
ing that Pie outperforms vLLMby up to 1.9× in through-
put and 2× in latency. Compared to FlexGen, Pie achieves
up to 60× lower latency and 9.4× higher throughput.

The rest of this paper is organized as follows: Section 2
gives background on LLM inferences and motivates Pie. In
Section 3, we discuss the design, and in Section 4, we detail
the implementation. Section 5 presents Pie’s performance.
We discuss related work in Section 6 and conclude in Sec-
tion 7.

2 Background
This section discusses the context of LLM inference, high-
lighting memory as one of the most important bottlenecks.
It reviews existing solutions to this issue and introduces the
GH200 architecture as a promising new hardware to over-
come this challenge, discussing the trade-offs involved in
using the device.

2.1 LLM inference
LLMs have demonstrated significant capabilities in tasks
such as chatting, content creation, and programming. De-
ploying these applications requires GPU-based systems to
run the LLMs. However, serving LLMs remains slow and
costly, requiring many high-end GPUs for production-level
services.

Today’s LLMs primarily operate on autoregressive Trans-
former models [41], generating words as tokens sequentially
based on a given prompt and previously produced tokens. A
token represents a condensed version of a character series,
typically encoded using Byte-Paired Encoding [35], with an
average token equating to about four English characters.

The inferencemechanism for LLMs is split into two phases:
(i) the prefill stage, where the model processes all input
prompt tokens simultaneously, and (ii) the decoding stage,
where it sequentially generates tokens. This token gener-
ation is sequential because it depends on the accumulated
conditional probabilities of all preceding tokens, continuing
until a termination token is produced. An LLM inference
engine, such as vLLM [20], TGI [15], or TensorRT-LLM [23],
executes transformer models and orchestrates the prefill and
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decode stages. Since each request must be processed sequen-
tially, the engine batches multiple requests together [48] to
boost throughput. Efficient memory management is crucial,
as the intermediate state for all tokens in a batch must be
stored in the key-value (KV) cache simultaneously.

2.2 Memory bottleneck
KV Cache Benefits from Larger Size. The KV cache size

increases significantly with more requests. For OPT-13B,
with a per-token KV cache of 800 KB, one request with 2048
tokens requires 1.6 GB. Modern GPUs, with memory in the
tens of GBs, can process only a limited number of requests
simultaneously. Increasing thememory size allows LLM serv-
ing systems to expand the batch size, thereby improving both
throughput and latency.

KV Cache is Dynamic. LLM memory management must
dynamically adapt to changing workloads and system envi-
ronments. The varying input and output sizes of LLM work-
loads require a flexible memory system to handle diverse
prompt lengths. Rapid fluctuations in workload characteris-
tics require real-time adjustments [36, 39, 51], while changes
in system environments, such as variations in bandwidth
or computational resources, also impact memory usage ef-
ficiency. The necessity to balance memory utilization and
maintain performance stability under varying conditions
makes LLM memory management more challenging.

2.3 Existing Solutions
Recent advancements in LLM inference have led to the devel-
opment of dedicated systems tailored to this domain. Exam-
ples include FasterTransformer [24], Orca [48], vLLM [20],
FlexGen [38] and so on. Orca is a LLM inferece system that
demonstrates significant throughput improvements for LLM
inference by iteration-level scheduling techniques. vLLM is
a system built based on PagedAttention mechanism, allows
for even more efficient memory management and higher
throughput inference by storing attention keys and values
in non-contiguous paged memory.
FlexGen addresses the constraints of limited GPU mem-

ory by offloading the computational and memory demands
of LLM inference to a combination of GPU, CPU, and disk
resources. By optimizing the storage and access patterns of
tensors and employing weight and cache compression, Flex-
Gen extends the capabilities of conventional hardware setups
and provides solutions for systems with limited memory.
These systems use swapping mechanisms that expose

lower performance devices to applications. Many employ a
best-effort strategy to transfer necessary data to the GPU
before it is needed. For instance, in vLLM, requests may
be preempted and swapped out when memory capacity is
insufficient. Once memory becomes sufficient again, these
requests need to be rescheduled and swapped back in. Dur-
ing this time, vLLM must wait for the swap-in process to

0.25 0.5 1 2 4 8 16 32 64 128 256
Memory Size (MB)

300
600
900

1200
1500

Ba
nd

wi
dt

h 
(G

B/
s) cpu-gpu

gpu-cpu
gpu-gpu

Figure 1. GH200 Bandwidth Measurement

complete before it can proceed with serving the requests.
Similarly, FlexGen stores model weights, attentions, and acti-
vations on the CPU. It triggers a swap-in only when certain
data is needed and not found in the GPU. These on-demand
swap-ins often cause delays, as computations must wait for
data transfers to complete. As a result, applications in these
systems experience increased latency and reduced through-
put while waiting for data transfers from CPU memory or
disk to GPU memory.

Furthermore, these systems lack the capability to dynami-
cally adapt to changing workloads or system environments,
potentially leading to resource under-utilization, higher la-
tency, and lower throughput.

2.4 Graph Hopper Superchip
The NVIDIA GH200 Grace Hopper Superchip [27], integrat-
ing Hopper GPU architecture and Grace CPU, is tailored for
demanding AI and high-performance computing workloads.
This advanced superchip is equipped with 96GB of HBM3e
memory, capable of delivering memory performance with
a substantial bandwidth of 4 terabytes per second. Another
GH200 standout features is NVIDIA’s NVLink Chip-2-Chip
interconnect, which facilitates high-speed, high-bandwidth
communication and coherence between the CPU and GPU.
It achieves a data transfer rate of 419 GB/s from CPU to GPU
and 371 GB/s from GPU to CPU.
We measured the CPU-GPU bandwidth using nvband-

width [26], with the results shown in Figure 1. We found
that: 1. Access granularity is important, with only accesses
larger than 16MB utilizing 95% of the memory bandwidth.
However, in real applications, GPUs can hide slowdowns
from small accesses through their memory hierarchy and
memory coalescing. In contrast, directly accessing the CPU
exposes much lower bandwidth. 2. The effective bandwidth
between CPU and GPU is only about 1/4 × of the GPU-GPU
bandwidth. These demonstrate the need of accessing CPU
memory through the GPU using a swapping-like mechanism.

3 Design
Pie employs performance-transparent swapping, operating
layer by layer through the KV cache. By prefetching data
for upcoming layers through a FIFO queue, Pie masks the
latency of memory swapping, overlapping it with ongoing
computations, thus expanding the effective GPU memory
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capacity. Pie also uses adaptive expansion to optimize capac-
ity expansion, dynamically adjusting expansion size based
on real-time workloads and system conditions to ensure ef-
ficient resource utilization while maintaining performance
transparency.
We provide an abstracted logical view of using the CPU

memory pool as effective memory extension in 3.1, present
Pie’s architecture in 3.2, describe the design of performance-
transparent swapping in 3.3, and discuss how adaptive ex-
pansion achieves optimal swapping policies in 3.4.

3.1 Expand Effective GPU Memory Size
In this subsection, we describe our methods for GPUmemory
expansion, specifically focusing on the memory allocated for
KV cache during LLM inference.

Our model considers both a physical and a logical view of
GPU memory. Physically, the GPU designates 𝑎 GB for KV
cache, with the remaining capacity used for model weights
and a variety of intermediate results. Assuming the model
has 𝑛 layers, each with a corresponding KV cache, results in
𝑛 layers of KV cache. We relocate𝑚 layers of the KV cache to
the CPU, leaving 𝑛 −𝑚 layers on the GPU. Pie uses per-layer
KV cache as the basic management unit, making it simple,
model-agnostic, and non-intrusive.

The capacity for each layer is defined as the total KV cache
capacity divided by the number of logical layers. Initially, 𝑎
GB of GPU memory was divided among 𝑛 layers, resulting in
a capacity of 𝑎

𝑛
GB per layer. When𝑚 layers are transferred

to the CPU, the GPU’s memory originally allocated for these
𝑚 layers can now be redistributed among the remaining
(𝑛 −𝑚) layers, enhancing their capacity to 𝑎

𝑛−𝑚 GB each.
Assuming the CPU’s capacity is underutilized, the expanded
GPU KV cache effectively expands to a total capacity of
𝑛 × 𝑎

𝑛−𝑚 GB. We describe this extension in capacity using
the term expansion, defined as the ratio 𝑛

𝑛−𝑚 . In subsequent
sections, expansion denotes the increased capacity ratio.

The value of expansion is crucial to the performance. Ide-
ally, expansion should be maximized because a higher expan-
sion leads to a larger effective memory size. The batch size,
or the number of requests that can be concurrently served,
is determined by the available memory size. Therefore, this
increase in effective memory size increases the batch size,
potentially increasing throughput and reducing end-to-end
latency.
But expansion comes with a cost. Because higher expan-

sion means more layers are going to be physically on CPU,
which, in return, means more data need to be transferred dur-
ing inference. In order to realize performance-transparent
swapping, which requires swapping latency to be hidden by
the already existed computation latency, 𝑡swap ×𝑚 must be
equal or less than 𝑡compute × 𝑛. Here, 𝑡compute represents the
time taken to compute one layer, and 𝑡swap represents the
time taken to swap one layer between the CPU and GPU.

Per-layer computation latency does not increase linearly
with the KV cache size, but per-layer swapping latency does.
Higher expansion also results in more layers residing on
the CPU at any given time. Consequently, more layers are
involved in swapping during each token’s generation.

Initially, without swapping, the swapping latency among
all layers is zero. As expansion increases, both per-layer
swapping and computation increase, more layers are in-
volved in swapping. This combined effect causes the total
swapping latency to increase much faster than the total com-
putation latency. The maximum tolerable number of layers
involved in swapping is reached when the computation and
swapping latencies become equal, or 𝑡𝑠𝑤𝑎𝑝 ×𝑚 = 𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒 ×𝑛.

3.2 Pie Architecture
In the inference process of LLMs, data is processed token by
token and then layer by layer. At any given time, the GPU
tensors interact only with the KV cache of the current layer.
After spending a computation time 𝑡compute processing the
current layer 𝑘 , the tensors begin processing the next layer
𝑘 + 1. This processing uses the output from layer 𝑘 and the
KV cache updated from the previous token iterations for
layer 𝑘 + 1. The updated cache for each layer is accessed at
intervals of n × 𝑡compute.

Performance-transparent swapping happens concurrently
as the computation progress through the layers. Ideally,
swapping out the cache of layers that are not in use to CPU
memory and reloading it before the phase in which they are
needed in the next iteration should not impede the inference
process.
In the Pie architecture, the cache states of recently com-

pleted layers and upcoming layers are clear. The recently
completed layers (Layer 𝑘 − 2, Layer 𝑘 − 1 in Figure 2) are
swappable, meaning they can be swapped out to CPU mem-
ory because they won’t be in use for a while. The caches for
upcoming layers (Layer 𝑘 , Layer 𝑘 + 1 in Figure 2) must be
prefetched to GPU memory before they are accessed. For
layers a bit further ahead (Layer LAST in Figure 2), they
should be prefetched if CPU-GPU interconnect is available.
However, the caches states of other layers remains uncertain:
if they were swapped out and are not immediately needed,
they free up GPU memory space and can be swapped back in
later. If they have remained in GPU memory due to limited
swapping bandwidth, they do not occupy transfer bandwidth
and can be directly used in the next iteration.
To maximize effective cache size through performance-

transparent swapping, an optimal policy should minimize
the number of swaps, as swapping is expensive, consuming
bandwidth and causing a logical layer to occupy memory on
both the CPU and GPU simultaneously. This can be achieved
by maximizing the time each swapped-out layer spends in
CPU memory, as longer durations lead to fewer swaps and
lower overhead.
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Pie features a swapping control logic, as illustrated in Fig-
ure 2. Based on the current computation layer index and
a mapping table of per-layer KV caches, it dynamically de-
termines whether a layer should be swapped out or if a
previously swapped-out layer needs to be swapped back
in at a given time. To prevent delays in computation, it is
crucial that the caches of the swapped-out layers are fully
transferred back via the CPU-GPU interconnect before the
computation begins.

In the Pie architecture, the caches of each layer do not have
a fixed allocation; the KV cache is not statically partitioned
between the CPU and GPU. In other words, the logical layers
do not have a fixed physical per-layer cache on either CPU or
GPU; their physical per-layer cache is dynamically allocated
during swap-in/out operations.

Pie employs a mapping table within its swapping control
logic, functioning similarly to a traditional page table in an
operating system. This mapping table maintains the corre-
spondence between the logical layer index and its location
in either the CPU or GPU cache, as illustrated in Figure 3.

As swapping begins, the swapping control identifies eligi-
ble layers for swapping and transfers them to CPU memory,
updating the mapping table. CPU pointers facilitate cache
retrieval back to the GPU, while GPU pointers manage actual
cache data access. Timestamps are also recorded in the table.

During the swapping process, the mapping table must be
updated in a two-phase manner. First, memory is allocated

to the layer, and the CPU pointer is stored in the table, mak-
ing it accessible to the swapping logic. The swapping then
begins and proceeds in the background. Only when the swap
operation is confirmed to be completed is the mapping table
updated to reflect that the layer is physically present on the
destination device.

Before computation at layer 𝑘 begins, Pie must check if the
layer is physically present on the GPU by dereferencing the
GPU pointer. If the pointer does not exist or the swapping
operation has not finished, the computation must wait until
the layer has been completely moved back to the GPU.

3.3 Performance-transparent Swapping
Swapping policy is crucial for effective swapping perfor-
mance. To enable performance-transparent swapping, it is
essential that the time each token spends on swapping does
not exceed its compute time. An optimal swapping policy
maximizes the expansion value, effectively extending mem-
ory capacity. Conversely, a suboptimal policy results in sig-
nificantly lower expansion values, which wastes memory
bandwidth and limits potential memory enhancements, or
delays computing tasks, thereby violating the goal of perfor-
mance transparency.

In an ideal setup, precise profiling of eachmodel, hardware,
and workload combination is feasible. We can then estimate
the swapping latency for different data transfer sizes and the
computation latency for each token. Based on these estima-
tions, our goal is to identify the maximum data transfer size,
denoted as 𝑏 GB, that ensures the swapping latency remains
within the computation latency limits. Assuming 𝑎 GB of
memory is available on the GPU for KV cache usage, this
approach effectively expands the memory size to 𝑎 + 𝑏 GB.
The expansion factor, previously defined as 𝑛

𝑛−𝑚 and used
to compare the logical number of layers to those physically
on the GPU, now extends to model the effective memory
size relative to the physical GPU memory size, previously
denoted as 𝑎+𝑏

𝑎
. Each device must reserve additional space

for swap in/out buffers, resulting in 4 buffers in the entire
effective memory space and 2 buffers on the physical GPU.
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Figure 4. Optimal Swapping Policy

The ratio is refined to 𝑎+𝑏
𝑎

= 𝑛+4
𝑛−𝑚+2 . Given the known values

of 𝑎, 𝑏, and 𝑛, we can then compute the value of𝑚.
In this scenario, the optimal protocol is straightforward.

When a layer begins computation, it first checks if the pre-
vious swap-in has completed. If the swap-in has finished,
the system initiates a swap-in for the "hottest layer", which
refers to the layer currently in the CPU that is closest to being
accessed next. Similarly, the system checks if the previous
swap-out has completed. If the swap-out has finished, the
system initiates a swap-out for the "coldest layer", defined
as the last layer that finished computation. This choice en-
sures that all other layers’ values will be accessed before this
layer is needed again. An exception to the swap-out protocol
occurs if every layer currently in the CPU is colder than
the coldest layer on the GPU. In such cases, the swap-out
operation does not proceed.

Figure 4 shows a nine-layer model where swapping time
for each layer is twice the computation time. The model
allocates two layers in the CPU, with an expansion factor of
1.28. After the initial warm-up, both CPU and GPU use the
memory space of two layers as a swapping buffer, acting as
sender and receiver for swap-in and swap-out operations.
In this example, a swap-out does not occur during the

computation of layer 1 because the CPU layers (8 and 9) are
colder than any GPU layers. During layer 2’s computation,
layer 1 becomes the coldest, and its swap-out is initiated.
Since there is no available space for a swap-in, this operation
is skipped. During layer 3’s computation, layer 2 becomes
the coldest, but because layer 1’s swap-out is still in progress,
both swap-out and swap-in operations are skipped. At layer
4, layer 3 is identified as the coldest, allowing its swap-out.
With layer 1 now on the CPU, its original GPU space is
allocated to swap in layer 8, the hottest layer on the CPU.

Following this protocol ensures that each layer chosen to
be swapped to the CPU is the coldest across both the CPU
and GPU at the moment of initiating the swap-out. Since the
layer to be swapped out is the logically coldest, the swap-out
always occurs after the previous swap-out has finished. After

the initial warm-up, there will not be a condition where no
layer currently in the CPU is hotter than the coldest layer
on the GPU. When swapping out layer 𝑘𝑛 , it is ensured that
previously swapped-out layers 𝑘𝑝 , 𝑘𝑞 , and 𝑘𝑚 are growing
hotter in the order they were swapped out: the earlier a layer
was swapped to the CPU, the hotter it becomes.

Therefore, the optimal swapping protocol essentially func-
tions as a First In, First Out (FIFO) queue. The time each
layer spends on the CPU is maximized to an optimal value
bounded by the swapping latency. As illustrated in Figure 4,
each layer spends the equivalent of eight layer computation
times on the CPU. The FIFO queue is four layers long be-
cause the expansion ensures two layers are physically on the
CPU and two are in swapping. Each layer takes the equiv-
alent of two layer computation times to swap in, waits for
two preceding layers in the FIFO queue to be processed, and
another two layer computation times to swap out. Thus, a
layer spends a total of eight layer computation times in the
FIFO queue.

3.4 Adaptive Expansion
3.4.1 Deciding Optimal Expansion is Challenging. De-
termining the optimal expansion value is a complex task.
Each combination of model, workload, and hardware has
unique computation and swapping latencies, which influ-
ence the maximum effective memory capacity expansion size.
This size, in turn, determines the optimal expansion ratio.
However, accurately identifying this value requires thorough
consideration, as computation and swapping latencies can
vary even on the same machine with the same model. For in-
stance, larger batch sizes, resulting from either larger cache
sizes or shorter contexts, and more complex attention mech-
anisms can lead to longer computation latencies. Similarly,
smaller swapping granularity and larger cache sizes may
result in increased swapping latencies. More importantly,
even thorough profiling can only ensure optimal expansion
on an isolated, stable system where swapping and compu-
tation latency do not change. This is often not the case, as
CPU-GPU communication can occur unpredictably due to
concurrent tasks, thereby significantly impacting swapping
latency. Thus, precisely matching computation and swap-
ping latencies to achieve optimal expansion is a challenging
task.
If the expansion value is estimated to be higher than the

optimal value, the swapping of many layers may not be
completed before the computation requires access to them.
This delay in swapping can block the start of computation,
resulting in increased latency and violating the requirement
of performance-transparent swapping.
If the expansion value is estimated to be lower than the

optimal value, it will not only limit the potential extent of
memory expansion but also result in a significant waste
of memory bandwidth when following the same swapping
policy. The optimal expansion value is selected to maximize
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the effective extended memory size within the given time
interval. Any value smaller than the optimal will result in
a reduced effective extended memory size. However, with
the given time interval and a swapping policy that swaps
whenever the interconnect is free, smaller expansion values
will cause unnecessary data to be swapped out and in.

We could also design other swapping policies to statically
generate swap in and out policies for each layer at the begin-
ning of each token’s computation. However, this approach
is also difficult. First, this requires precise estimation of both
swapping and computation latencies; otherwise, it may re-
sult in delays in computation. Moreover, even with precise
estimation, this remains a complex mathematical problem.
Each swap decision affects the subsequent swap decisions.
Therefore, to achieve the optimal value, the decision com-
plexity is ((𝑚 + 1) × (𝑛 −𝑚 + 1))𝑛 , where𝑚 is the number
of layers in the CPU and 𝑛 −𝑚 is the number of layers in
the GPU. At each layer, it needs to decide whether to swap
in a layer among𝑚 layers and whether to swap out a layer
among𝑛−𝑚 layers, resulting in ((𝑚 + 1) × (𝑛 −𝑚 + 1)) com-
binations (including the possibility of no swap). Even if we
constrain the swap in and out operations to only the layers
closest to the current layer (hottest/coldest layers), the com-
plexity is still at least 4𝑛 . Searching for the optimal value
among these combinations is unrealistic. Simpler algorithms
may not achieve the best possible results. Lastly, layers of
adjacent tokens are not entirely independent. This further
complicates the problem. For example, if the system detects
that the CPU-GPU interconnect is free at a given token but
decides not to swap in the first layer of the next token, the
subsequent token will need to wait at the first layer until the
swap-in is completed. On the other hand, if the next token’s
first layer is swapped in too early, the layer that has been
swapped out to the CPU for this space might not be cold
enough (e.g., the swap out could wait until layer 30, but the
policy might decide to do it at layer 23). This reduces its time
in CPU memory, leading to more frequent swaps and higher
overhead.

3.4.2 Adaptively Changing Expansion. Therefore, Pie
employs an adaptive swapping policy to achieve optimal
swapping, as shown in Figure 4, without requiring extensive
profiling or calculation. More importantly, this policy allows
the system to adjust to dynamic workloads. Pie begins with
all layers in the GPU cache and then starts the workload,
gradually increasing the number of layers in the CPU cache.
Assuming the size of available GPU memory remains con-
stant, increasing the number of layers stored on the CPU
results in a larger per-layer cache size.

The condition for Pie to set more layers into swapping is
straightforward: at the time of initiating a swap-in or swap-
out, Pie checks if additional on-CPU layers are needed for the
current token computation. If no on-CPU layers are required,
it indicates the current expansion is too small and should
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Figure 5. Pie Achieves Optimal Expansion Adaptively. As-
suming a 6-layer model, this illustrates the cache status when
the 5th layer is in computation, while all other layers are idle
(neither in computation nor transfer).

be increased, leading to a larger per-layer cache and more
layers in the CPU. This triggers the “More Swapping” events
in Figure 5. To prevent waiting, we heuristically allow Pie
to swap in the first few layers of the next token. This rule
violation occurs at a very low frequency. When the violation
hits a preset ratio, it triggers an increase in expansion.
The condition that triggers Pie to reduce swapping with

smaller expansion is also straightforward. Pie checkswhether
the swapping latency remains lower than the computation
latency. If the model has to wait for swapping to finish be-
fore continuing computation, Pie reduces the expansion and
moves more layers back to the GPU. The example in Figure 5
shows an example where the latency of swapping four lay-
ers per token is too high, causing the computation to wait.
Consequently, the number of layers on the CPU is reduced
by one.
When adjusting expansion, Pie compares performance

records with the current configuration. If the records show
that the workload stops scaling with higher expansion, Pie
stops increasing expansion and tests if decreasing it has any
adverse effects. In scenarios where Pie has more bandwidth
but low workload demands, it periodically checks the work-
load by increasing expansion and reduces it if the workload
remains low.
Benefiting from the mapping table, Pie can dynamically

adjust the expansion. It quickly converges to the optimal
expansion at the beginning of a static workload and reacts
promptly to any changes in the background traffic that re-
duces the effective bandwidth available. An exception might
be occasional, unexpected CPU-GPU traffic. In such cases,
Pie may experience a temporary slowdown as it waits. If
this traffic is prolonged, Pie will adapt accordingly. Other-
wise, Pie will tolerate the brief interference without making
adjustments.
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4 Implementation
Pie is built on vLLM, an end-to-end serving system with a
FastAPI [11] frontend and a GPU-based inference engine.
The frontend extends the OpenAI API interface [29]. We
followed the original vLLM implementation for the frontend.

We added 3,000 lines of Python and 100 lines of C++/CUDA
code to enable performance-transparent swapping and adap-
tive expansion. This mostly self-contained code manages the
layer mapping table and triggers necessary swaps and ex-
pansion changes. Additionally, we developed a CUDA kernel
for efficient per-layer KV cache swapping.

4.1 Support Adaptive expansion
vLLM manages memory in blocks using a block manager.
When a request runs out of memory, the block manager allo-
cates an additional block to it. Once the request is completed
or preempted, all allocated blocks are returned to the block
manager, which then adds them to a free block list. To en-
able adaptive expansion, we modified the block manager to
handle dynamically changing per-layer memory spaces.

To increase the per-layer cache size, Pie first prepares the
memory space before making them visible. After the expan-
sion increment is triggered by the conditions specified in
Section 3.4.2, Pie initiates a reallocation process. When swap-
ping a layer into a dynamically allocated per-layer cache,
if this cache is allocated for the first time to handle swap-
in/out operations following the expansion trigger, its size
will be incremented by reallocating it to a different loca-
tion with sufficient contiguous memory. At this stage, only
blocks within the previous size are accessible, and accesses
are safely redirected through the mapping table. This redi-
rection is achieved because accesses are performed via a base
pointer and offset, with the offset of each block remaining
unchanged and the new base pointer obtained through the
mapping table. Once every layer has undergone at least one
swap, all layers’ spaces have been physically incremented.
Pie then adds the newly incremented blocks to the free block
lists in the block manager, making them allocatable and ac-
cessible.
Similarly, when decreasing the per-layer cache size, Pie

reallocates the entire per-layer cache to a new contiguous
address during swapping. All blocks remain accessible, but
Pie avoids scheduling any requests that use blocks beyond
the new decreased size. Once all layers’ sizes have been
decreased, Pie removes the blocks beyond the new size from
the free block lists in the block manager.

4.2 Support Different Models
For the model executor, we implemented support for popu-
lar LLMs such as OPT [50] and LLaMA [40], which vLLM

originally implemented using PyTorch [31] and Transform-
ers [45]. Adding support for different models is straightfor-
ward and requires less than 50 lines of code to add a con-
trol loop that triggers performance-transparent swapping or
adapts to expansion.

5 Evaluation
In this section, we aim to comprehensively evaluate our
system by addressing the following key questions:

1. How much GPU memory can Pie save? (§5.2)
2. Howmuch performance improvement can Pie provide

compared to vLLM, assuming the same amount of
GPU memory is used? (§5.3)

3. How does the request rate impact Pie’s performance
compared to other systems? (§5.4)

4. In Pie, how important is the choice of expansion? How
effective is the self-adaptive swapping in achieving
optimal performance? (§5.5)

5. How does Pie’s design for improving throughput af-
fect the average per token end-to-end latency? (§5.6)

6. How does Pie compare to state-of-the-art swapping-
based systems? (§5.7)

5.1 Evaluation Setup
Model and Server Configurations. We evaluated the

following models: OPT with 13B and 30B parameters [50],
and Llama with 13B parameters [40]. All experiments were
conducted on NVIDIA Grace Hopper instances, featuring
480GB of LPDDR5X DRAM on the CPU and 96GB of HBM3
on the GPU, interconnected via 900GB/s NVLink [25].

Workloads. We used workloads from ShareGPT [30, 36]
and Alpaca [39, 44] datasets, containing real LLM service
texts. ShareGPT features longer inputs and outputs than
Alpaca. We generate request arrival times using a Poisson
distribution with different request rates. We tokenized the
datasets following prior work [20].

Metrics. Wemeasure serving throughput as the total num-
ber of output tokens divided by the duration. We also report
per-token latency, which includes queuing latency (total wait
time divided by output token numbers) and compute latency
(total compute time divided by output token numbers).

Baselines. vLLM [20] is an inference engine optimized
for managing memory fragmentation, enhancing through-
put and latency through paged attention. Pie is built on top
of vLLM. FlexGen [38] is a state-of-the-art swapping-based
LLM inference framework. It uses synchronous swapping
to fetch data on demand if it is not in GPU memory. Flex-
Gen utilizes offline profiling to fit a cost model for optimal
allocation and swapping policies. Based on the hardware
setup (CPU/GPU memory, prompt length, output length),
the model determines the allocation of weights, attention
KV cache, and activations between CPU and GPU.
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5.2 Higher Throughput, Lower GPU Memory Usage
In LLM inference, throughput and latency do not scale in-
definitely with increasing KV cache size. Each combination
of workload, model, and hardware has a scaling limit be-
yond which additional performance gains are not observed,
despite unused GPU memory.
Different workloads have varying memory intensity on

the same model and hardware. For workloads on GPU, either
GPU cores or memory will be fully utilized first. When GPU
cores are used up before memory, the workload becomes
compute-bound. Many workloads become compute-bound
well before exhausting KV cache physical GPU memory.

Given this constraint, it is more efficient to allocate only
the necessary GPU memory for inference tasks, optimizing
performance without excessive resource use. A key question
to consider is whether this required memory (n GB) needs to
be entirely on the GPU. Pie explores reducing GPU memory
usage while maintaining optimal throughput and latency by
transparently leveraging CPU memory.
In Figure 6, we run alpaca and shareGPT workloads on

OPT-13B, OPT-30B and Llama-13B, across different expan-
sion values. We observe that increasing expansion improves
the model throughput up to a certain point, beyond which
the overhead of swapping increase as computation now has
to wait for swapping to finish. The turning point where
throughput is maximized differs for different models and
physical GPU KV cache size combinations. For example, run-
ning OPT-13B on the ShareGPT dataset, for 3GB of physical
GPU KV cache size, the throughput scales throughout the
expansion values from 1 to 2. For 7GB of physical GPU KV
cache size, the throughput scales until expansion reaches
1.4 or 1.6, depending on workloads and datasets, beyond
which the overhead dominates. This highlights the impor-
tance of adaptive expansion that dynamically chooses the
best expansion value to maximize inference throughput.

Comparing to the baseline performance where there is no
expansion (i.e., expansion = 1), The optimal expansion value
results in a throughput improvement of up to 1.86× when
running OPT-30B on the ShareGPT dataset, 1.58× when
running OPT-30B on the Alpaca dataset, 1.54×when running
OPT-13B on the ShareGPT dataset, and 1.27× when running
Llama-13B on the Alpaca dataset respectively.
We also found that with a high expansion value, Pie can

match on-device performance while using up to 1.67× less
GPU memory. Performance-transparent swapping is able to
effectively reduce GPU memory usage by expanding into
CPU memory. We observed similar trends across other mod-
els and workloads.

5.3 Performance Gain Over vLLM
In this evaluation, we explore the performance of Pie versus
vLLM. Both systems utilize the same amount of GPU physical
memory dedicated to the KV cache. By fixing the request rate,

we gradually increase the physical memory size to observe
the performance impact. The critical point of comparison is
reached when the physical memory is sufficiently large for
vLLM to handle all requests without needing to preempt and
recompute. Our findings demonstrate that Pie consistently
outperforms vLLM by efficiently managing memory through
performance-transparent swapping, thereby offering better
performance even under constrained memory conditions.

In Figure 7, we vary the physical GPU KV cache size from
3GB to 12GB, where Pie outperforms vLLM at smaller GPU
KV cache sizes and achieve similar performance at the largest
memory capacity (12GB). When GPU memory capacity is
small, vLLM suffers from significant recomputation. During
this period, capacity expansion has a crucial impact on per-
formance. Pie outperforms vLLM by up to 1.5× on Alpaca
dataset, and 1.9× on ShareGPT dataset, across different Phys-
ical GPU KV cache sizes. As more memory becomes available
on the GPU, the improvement ratio gradually decreases until
Pie and vLLM perform similarly.

5.4 Scale with Request Rate
A larger effective cache size allows the cache to handle a
higher request rate. We find that increasing the expansion
enables Pie to effectively scale the throughput when the
request rate is able to saturate the KV cache size. On Al-
paca dataset, Pie is able to achieve 1.2 − 1.6× throughput
improvement. On ShareGPT dataset, Pie is able to improve
throughput by 1.6 − 1.9×. This is due to Pie’s performance-
transparent swapping which enables Pie to expand its GPU
KV cache size to effectively utilize on-CPUmemory, enabling
larger effective batch size and hence higher throughput. Pie’s
performance-transparent swapping achieves minimal over-
head with near-linear scaling of throughput with respect
to expansion, when the KV cache is saturated. We observe
that under low request rate (e.g. < 15.0 requests per second
for Alpaca, and < 3.0 requests per second for ShareGPT),
expansion has less effect on the request throughput as the
arrival request rate is unable to saturate the KV cache.

5.5 Adaptive Expansion
In this section, we show adaptive expansion’s effectiveness.
Figure 9a shows Pie quickly adjusting its expansion value to
an optimal level. Pie-optimal uses the best expansion value
from exhaustive testing, keeping CPU-GPU bandwidth fully
utilized without delays. Compared to Pie-optimal, Pie in-
curs a less than 2% overhead due to online monitoring and
adaptation.
At the beginning of a workload, Pie needs some time to

adapt to the current model/workload/hardware combination.
But it shortly finds the optimal value of expansion. For most
workloads, the time it takes for Pie to achieve optimal ex-
pansion is within the cache warm-up time, having negligible
overhead as inference services are typically long-running.
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Figure 6. Pie achieves higher throughput with lower GPU memory usage, across various Physical GPU KV Cache sizes.
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(b) OPT-30B, ShareGPT
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(c) Llama-13b, Alpaca
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Figure 7. LLM inference throughput with different GPU KV
Cache Sizes (GB).
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Figure 8. OPT-30B Throughput Change with Expansion on
Different Req Rates. Physical GPU KV cache Size = 3.

As shown in Figure 9b, Pie achieves optimal throughput
compared to swapping with other expansion values (from 1.2
to 2.0). Pie is able to adaptively configure expansion across
different KV cache sizes, workload, and models. We observed
similar trends in other datasets and model combinations.

5.6 Lower Latency, Higher Throughput
Figure 9c demonstrates how Pie achieves higher through-
put with lower per-token average latency. Per-token latency
consists of queuing and computation latency. By using Pie
and increasing the KV cache memory size through the ex-
pansion value, we found that computation latency remains
relatively constant, while higher expansion values reduce
queuing latency. This trend is shown in Figure 9c, illustrating
improvement from expansion 1.0 to 2.0.

If the expansion value is too high, swapping performance
transparency may be compromised. The latency of transfer-
ring the extended memory scales linearly with its size, even-
tually exceeding computation latency. This causes compu-
tation to wait for data, increasing its latency. Consequently,
queuing latency also rises because, despite the larger effec-
tive capacity, each token’s longer computation time delays
tokens in the queue. This is illustrated by expansion 2.2 in
Figure 9c, where both compute and queuing latencies are
longer compared to expansion 2.0 due to this blocking effect.
Throughput improves with larger effective memory size,

though longer compute latency can compromise this im-
provement. Optimal throughput is achieved with an expan-
sion value of 2.08, which is obtained through the adaptive ex-
pansion. While cache reallocation increases queuing latency,
the larger effective capacity compensates for this, resulting
in higher overall throughput.

5.7 Comparison With FlexGen
We evaluated the OPT-30B model using the ShareGPT and
Alpaca datasets on both Pie and FlexGen. Pie can handle
requests of varying sizes, whereas FlexGen requires all input
sequences to be the same length, needing manual padding
to the maximum length for each dataset.

For each configuration, we provided FlexGen’s cost model
with the available GPU and CPU memory sizes as input and
run its generated policies on GH200. The cost model is fit
with profiling data points from different weight, activation,
and attention percentage setups, different number of GPU
batches (e.g. 3, 8, 12, 24), different GPU batch sizes (e.g. 32,
64, 128, 256), and prompt length (e.g. 20, 162), and generation
length (e.g. 32, 64, 128, 256, 512). In total, we profile 120
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Figure 9. Effectiveness of adaptive expansion. Pie achieves higher throughput with lower latency.
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Figure 10. Comparison of Pie and FlexGen performance on
Alpaca and ShareGPT datasets in terms of throughput and
latency.

configurations to fit the cost model, which takes hours to
finish all runs. The results are shown in Figure 10.
When the GPU memory size is less than 96GB, FlexGen

generates a policy that offloads weights to the CPU mem-
ory. This significantly reduces throughput and increases
generation latency. On Alpaca, FlexGen’s throughput is 7.8
× worse than Pie. On the ShareGPT dataset, which has a
longer prompt length and larger generation output length,
Pie achieves 9.4 × better throughput than FlexGen. It is also
important to note that Pie only uses the effective extended
memory size of the CPU, which is less than 15GB in all setups,
whereas FlexGen assumes it can freely use the entire 480GB
of available CPU memory when generating its policies.

6 Related Work
Generic Model Serving Systems. : These systems aim to

improve performance, scalability, and flexibility [6, 7, 21, 28,
37, 48, 49]. FasterTransformer, LightSeq, TurboTransformers,
DeepSpeed-Inference, and Hugging Face Accelerate focus
on transformer optimization [3, 10, 16, 24, 43]. They have
achieved significant improvements, but are still constrained
by GPU resource limitations.

Solving Memory Scarcity Through Recomputation
and Swapping. : Many works have proposed trading addi-
tional recompute time for reduced memory usage and per-
formance improvement [5, 8, 9, 13, 17, 19], but most of these
approaches focus primarily on training.
Swapping is another widely used technique to address

memory scarcity, also with many proposals focused on train-
ing [14, 32–34, 42, 46]. vLLM [20] swaps at the request level,
causing interruptions in computation for swapped-out re-
quests and providing no guarantee against delays in serving
due to data transfers. FlexGen [38] swaps in data only at the
time of access, leading to significant delays. Infinite-LLM [22]
orchestrates all available GPU and CPU memories across the
data center to store the KV cache. While it does not employ
explicit swapping operations, applications may experience
lower performance when the data is stored in CPU mem-
ory or remote memory. InferCept [1] focuses on augmented
LLMs and efficient interception to reuse previously generated
context, employing pipeline swapping mechanisms. How-
ever, its naive pipeline can still block computation, with no
attempts to guarantee the data will be ready when needed.
These methods overcome memory limitations, allowing

for larger models and complex workloads in resource con-
strained environments but may compromise performance
by exposing lower performance devices.

7 Conclusion
In conclusion, Pie effectively expands GPU memory size
through performance-transparent swapping and adaptive
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expansion. By leveraging predictable memory access pat-
terns, modern hardware’s high bandwidth, and real-time on-
line information, Pie optimizes the memory expansion ratio,
ensuring efficient GPU and CPU memory use while main-
taining low computation latency and high throughput across
varying conditions. Our evaluation demonstrates that Pie
achieves high throughput, low latency, and quickly adapts
to environments.
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