Zhuque: Failure is Not an
unvesy — Qption, it's an Exception

of Colorado
Boulder George Hodgkins*, Yi Xu*, Steven Swanson, Joseph Izraelevitz N \ S |_

. Non-Volatile 'Systems Laboratory
*co-first author

UCSDCSE

Computer Science and Engineering

Persistent Memory (PMEM) Motivation

PMEM characteristics Making PMEM-resided data reusable

e Byte-addressable. e Updates to PMEM should NOT violate data consistency across

e Persistent over power failures.

| failures. Existing PMEM Progamming eADR

aied orTANE T e Delivers DRAM-class latency Model * A new technology ensures
and bandwidth. e Failure-atomicity libraries: Allow that all writes that reach the

S a set of writes be atomically cache will be written to

e PMEM enables an applied to PMEM. PMEM in the event of a
application's in-memory data Whole system persistence: power outage.
to live beyond its lifetime. Automatically persist the whole *® Caches are effectively
system. persistent.

LE EI So

U S——

Whole Process Persistence (WPP) Our WPP Implementation: Zhuque

An Ideal PMEM Programming Normal Execution and Failure
Model Recovery
e High performance The program runs as usual
o Persistent cache. while Zhuque ensure that all
o Limit the scope of program memory (stack, heap,
persistence to a process etc.) resides in persistent e T T
(instead of whole system). memory. Save architectural > \.:

* User applications link to the C APIs provided by musl libc.
 We modify the implementation of the APls and the
arguments passed to the underlying system calls.

User application

map (), Crend)
e Easy to use. state to PMEM on kernel entry. munmap (), pthread. create()

o Can run unmodified =<
applications directly on From the application's
Zhuque --- musl-based perspective, power failure is ‘ SYS_mmap, SYS_clone, etc. v
implementation of WPP. delivered as an asynchronous , Architecture-specific system calls

signal (recoverable exception). > Linux kernel

musl-libc
Zhuque

Restart after failure <€

Process Lifecycle

Restore process state & > (OPTIONAL) Save architectural state &
relaunch threads Run user failure handler exit with ERESTART

i

Program executes

T

code is not modified. -
Normal C runtime startup » main() is run as a new thread ralin dgstructor " .eX't Rieanly
or with application error

Clean Start or Restart

After Failure

e Zhugque modifies
runtime startup and
termination; application

Does the process
context exist?

Power failure?

Memcached
| : e Memcached went through a rewrite of
Evaluation the sunchronization f 1
e Sync ronlza |On ramewor O use 20 75% Insert, 25% Search-Global lock 20 25% Insert, 75% Search-Global Lock
fine-grained locking across seven years 2. =
Environment of development and over thirty E10 210
e Platform with versions. £ £
. . 0' O.
o One 20-corelntel Xeon Gold 6230 o0 Most current PMEM libraries have ¥ w7 S -0 T
processor’ runnlng at 2.1 GHZ. Strict requirement fOr the underlylng 75% Insert, 25% Search-Fine-grained lock 25% Insert, 75% Search-Fine-grained Lock
£ 100+ €100+
o A total of 96 GB of DRAM and 768 GB (6 concurrency strategy. These g "
x128 GB) of Intel Optane DC Persistent requirement make converting recent & s i [' J] g 50, ﬂ I
Memory configured in 100% App Direct versions of memcached to run on : O-J?_izl [4' . - - o I i2| e
mode. PMEM a complicated and difficult ThrEdiEom THRES R
. . B Baseline [] Native BB Zhuque [J Mnemosyne [0 PMDK W Clobber-NVM
e Use Ext4 to manage persistent files and process.
directly access PMEM pages via DAX. o We run unmodified memcached on

Zhuque.

