
1

Zhuque: Failure is Not an Option, it’s an
Exception

George Hodgkins*, Yi Xu*, Steven Swanson, Joseph Izraelevitz

*co-first author

CU Boulder & UCSD

USENIX ATC ‘23

Presenter: George Hodgkins

2

Persistent Memories (PMEMs)

Application

Cache

DRAMPMEM

3

Persistent Memories (PMEMs)

Application

Cache

DRAMPMEM

● Persistent memory is
byte-addressable.

● Persistent over power failures.
● Delivers DRAM-class latency/BW.

PMEM

4

Persistent Memories (PMEMs)

Application

Cache

DRAMPMEM

● Persistent memory is
byte-addressable.

● Persistent over power failures.
● Delivers DRAM-class latency/BW.

PMEM

5

Persistent Memories (PMEMs)

Application

Cache

DRAMPMEM

● Persistent memory enables an
application's in-memory data to
live beyond its lifetime.

PMEM

6

The challenge

● The cache has been volatile.
● Cached updates will be dropped

after a power loss.

Cache

DRAMPMEM

Application

Cache

Applications need to explicitly evict cachelines
to provide crash consistency.

7

The challenge

● Evicted cachelines may not reach
PMEM in a desired order.

● Memory barrier enforce an
ordering on memory operations.

Cacheline eviction

DRAMPMEM

Application

Cache

S0

S2

S1
S3

8

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

● Libraries, programming models,
language support, and compilers.

● Usually allow applications to apply
sets of writes to persistent memory
atomically.

● They usually provide the interface of
"failure-atomic section" and log.

● They usually rely on cacheline
eviction and memory barrier
instructions.

PMEM Programming systems

9

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

● Transaction-based.
● Failure-atomic sections (FASEs).
● Whole system persistence (WSP).

PMEM Programming systems

1
0

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

● Transaction-based.
● Failure-atomic sections (FASEs).
● Whole system persistence (WSP).

PMEM Programming systems

Failure-atomicity libraries: Allow applications to apply sets of
writes to persistent memory atomically.

Makes everything persistent. From the
program's perspective, crashes never occur.

1
1

Transaction-based Libraries

void list_push(list_t *list,char* val){
TX_BEGIN{
int val_len = strlen(val);
log(list->buf[list->size], val_len);
memcpy(list->buf[list->size], val, val_len);
log(list->size, sizeof(size_t));
list->size++;
}TX_END

}

PMEM program with undo log based transaction-based library

Programmers explicitly mark
failure atomic transactions.

It is necessary to log extra information
during normal execution to support
recovery after a failure.

Once the effects of the code region are
guaranteed to survive a crash, the
operation is committed.

Traditional DRAM code

1
2

Transaction-based Libraries - Concurrency Control

void list_push(list_t *list,char* val){
TX_BEGIN{
lock(list);
int val_len = strlen(val);
log(list->buf[list->size], val_len);
memcpy(list->buf[list->size], val, val_len);
log(list->size, sizeof(size_t));
list->size++;
unlock(list);
}TX_END

}

PMEM program with undo log based transaction-based library

Expects programmers to acquire and
release locks in a conservative, strong
strict two-phase locking pattern.

1
3

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

● Transaction-based.
● Failure-atomic sections (FASEs).
● Whole system persistence (WSP).

PMEM Programming systems

Fundamentally incompatible with existing legacy
multithreaded code. Low performance.

1
4

FASE-based Libraries

void list_push(list_t *list,char* val){
int val_len = strlen(val);
lock(list->buf[list->size]);
log(list->buf[list->size], val_len);
memcpy(list->buf[list->size].val, val, val_len);
lock(list);
unlock(list->buf[list->size]);
log(list->size, sizeof(size_t));
list->size++;
unlock(list);

}

PMEM program with undo log based FASE-based library

Allows arbitrary locking scheme.
A FASE is a failure-atomic operation
protected by its outermost locks.

It is necessary to log extra
information during normal execution
to support recovery after a failure.

Traditional DRAM code

1
5

FASE-based Libraries

PMEM program with undo log based FASE-basedlibrary

FASE 0
FASE 1

Thread 0 Thread 1

● Works on legacy code.
● The arbitrary locking scheme allows updates to be

visible to other FASEs before current FASE commit.
● Need to track dependency between threads, and

rollback dependent FASEs in case of failure.

1
6

FASE-based Libraries

PMEM program with undo log based FASE-basedlibrary

FASE 0
FASE 1

Thread 0 Thread 1

● Works on legacy code.
● The arbitrary locking scheme allows updates to be

visible to other FASEs before current FASE commit.
● Need to track dependency between threads, and

rollback dependent FASEs in case of failure.
● Could be slow

1
7

FASE-based library

● Is not general enough for some code patterns.
● Need to persist all volatile states if they want to

be general enough to support this example.

FASE-based library

1
8

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

● Transaction-based.
● Failure-atomic sections (FASEs).
● Whole system persistence (WSP).

PMEM Programming systems

Fundamentally incompatible with existing legacy
multithreaded code.

Fundamental weaknesses that arise from the
interaction of IO and complex locking protocols.

1
9

Whole system persistence

● Making all of memory persistent
has been infeasible because caches
has been volatile.

● The benefits of making everything
persistent rather than a subset of
system state are not justified.

Whole system persistence

void list_push(list_t *list,char* val){
int val_len = strlen(val);
memcpy(list->buf[list->size], val,

val_len);
list->size++;

}

PMEM program with whole system persistence

2
0

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

● Transaction-based.
● Failure-atomic sections (FASEs).
● Whole system persistence (WSP).

PMEM Programming systems

Fundamentally incompatible with existing legacy
multithreaded code.

High performance overhead. And the benefits of
making everything persistent are not justified.

Fundamental weaknesses that arise from the
interaction of IO and complex locking protocols.

2
1

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

● High performance overhead.
● Hard to use.

PMEM Programming systems

2
2

Extended ADR (eADR)

Application

Cache

DRAMPMEM

● eADR ensures that all writes that
reach the cache will be written to
PMEM in the event of a power
outage.

● Caches are effectively persistent.

eADR

2
3

Ideal Persistent Memory Programming Model

Application

PMEM Programming systems

Cache

DRAMPMEM

● Fast.
● Flexible enough to legacy

programs, easy to use.

PMEM Programming systems

2
4

Whole Process Persistence

Application

Whole Process Persistence (Zhuque)

Cache

DRAMPMEM

From the application’s perspective, power failure is delivered as an
asynchronous signal (recoverable exception).

2
5

Whole Process Persistence

Application

Whole Process Persistence (Zhuque)

Cache

DRAMPMEM

● High performance
○ Persistent cache.
○ Limit the scope of persistence to a

process (instead of whole system).
● Easy to use.

○ Can run unmodified applications
directly on Zhuque --- musl-based
implementation of WPP.

Whole Process Persistence

From the application’s perspective, power failure is delivered as an
asynchronous signal (recoverable exception).

2
6

During normal execution

● Run unmodified ELF binaries linked to
Zhuque

● Zhuque ensures that all program memory
(stack, heap, etc.) resides in persistent
memory.

Whole Process Persistence

2
7

During normal execution

● Dynamic memory: return PMEM from
sbrk() and mmap().

● (Initialized) static memory: transform
private, writable file mappings to PMEM.

● Save architectural state to PMEM on kernel
entry.

Zhuque

2
8

At crash

● When the power failure interrupt is delivered to a thread, it saves its architectural state
in a preallocated region:
○ general-purpose registers
○ floating-point unit state
○ vector unit state

● The program receives a normal operating system signal when restarted (e.g. SIGPWR)

● We believe this is supported by the architecture, but firmware is closed to
modification…

Whole Process Persistence

2
9

At recovery

1. Restore application address space: restore the virtual memory mappings.
2. Restore system-specific states: In Zhuque, we track the state of threads and file

descriptors and restore them at restart.
3. Restore the architectural state (including stack pointer and program counter).

4. Run the application-defined power failure handler, if it exists.
5. Execution of the thread continues at the point where the failure interrupted it.

Whole Process Persistence

3
0

Zhuque -- Requirement to applications

● Threading and virtual memory must be managed using the POSIX-specified APIs.
● Applications must check error returns from system calls and other POSIX APIs.

3
1

Performance - microbenchmarks

3
2

Performance - python benchmarks

3
3

Performance - memcached 1.2.5

3
4

Performance - memcached 1.6.10

3
5

Zhuque: Failure is Not an Option, it’s an
Exception

 Thank you!

